Methods behind the Madness: Ecology at the Poles

Post provided by Chloe Robinson, Crystal Sobel and Valerie Levesque-Beaudin

Aurora Borealis in the polar north. Photo: Noel Bauza, Pixabay

For those of us in the Northern Hemisphere, the coldest months of the year are upon us. A combination of post-holiday ‘blues’ and the cold, dark mornings make the daily trudge to work all that less inspiring. Recent snow storms in locations such as Newfoundland (Canada), have made it nearly impossible for many people to leave their homes, let alone commute to work. Now cast your mind to a little over 2,000 km north of Newfoundland and imagine the challenges faced with carrying out a job during the coldest, darkest months of the year.

As with every other biome on the planet, polar biomes contain a variety of different species, from bugs to baleen whales. To better understand the different species at our poles, scientists need to collect ecological data, but this is far from a walk in the park.

Iceberg in the Gerlache Strait, Antarctica. Photo: Liam Quinn, flikr.

With the year 2020 marking 200 years since the discovery of Antarctica and the Centenary of ‘vital’ Scott Polar Research Institute (Cambridge, UK), we wanted to highlight some of the polar research published in the journal, featuring challenges faced and current research being undertaken at the poles.

Continue reading

#EpicDuckChallenge Shows we can Count on Drones

Below is a press release about the Methods in Ecology and Evolution  article ‘Drones count wildlife more accurately and precisely than humans‘ taken from the University of Adelaide.

Lead author Jarrod Hodgson, University of Adelaide, standing in one of the replica colonies of seabirds constructed for the #EpicDuckChallenge.

Lead author Jarrod Hodgson, University of Adelaide, standing in one of the replica colonies of seabirds constructed for the #EpicDuckChallenge.

A few thousand rubber ducks, a group of experienced wildlife spotters and a drone have proven the usefulness and accuracy of drones for wildlife monitoring.

A study from the University of Adelaide showed that monitoring wildlife using drones is more accurate than traditional counting approaches. This was published recently in the British Ecological Society journal Methods in Ecology and Evolution.

“For a few years now, drones have been used to monitor different animals that can be seen from above, including elephants, seals and nesting birds. But, until now, the accuracy of using drones to count wildlife was unclear,” says the study’s lead author, Jarrod Hodgson from the University’s Environment Institute and School of Biological Sciences. Continue reading

A New Way to Study Bee Cognition in the Wild

Understanding how animals perceive, learn and remember stimuli is critical for understanding both how cognition is shaped by natural selection, and how ecological factors impact behaviour.Unfortunately, the limited number of protocols currently available for studying insect cognition has restricted research to a few commercially available bee species, in almost exclusively laboratory settings.
In a new video Felicity Muth describes a simple method she developed with Trenton Cooper, Rene Bonilla and Anne Leonard for testing both lab- and wild-caught bees for their preferences, learning and memory. They hope this method will be useful for students and researchers who have not worked on cognition in bees before. The video includes a tutorial for carrying out the method and describes the data presented in their Methods in Ecology and Evolution article, also titled ‘A novel protocol for studying bee cognition in the wild‘.

This video is based on the article ‘A novel protocol for studying bee cognition in the wild by Muth et al.

 

Oxford Research Sheds Light on the Secret Life of Badgers

Below is a press release about the Methods paper ‘An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal‘ taken from the University of Oxford.

© Peter Trimming

Detecting the movements and interactions of elusive, nocturnal wildlife is a perpetual challenge for wildlife biologists. But, with security tracking technology, more commonly used to protect museum artwork, new Oxford University research has revealed fresh insights into the social behaviour of badgers, with implications for disease transmission.

Previous studies have assumed that badgers are territorial and, at times, anti-social, living in tight-knit and exclusive family groups in dens termed ‘setts’. This led to the perception that badgers actively defend territorial borders and consequently rarely travel beyond their social-group boundaries.

This picture of the badger social system is so widely accepted that some badger culling and vaccination programmes rely on it – considering badger society as being divided up into discrete units, with badgers rarely venturing beyond their exclusive social-groups. But, the findings, newly published in Methods in Ecology and Evolution, have revealed that badgers travel more frequently beyond these notional boundaries than first thought, and appear to at least tolerate their neighbours. Continue reading

Googling for Ecological Answers: Using the Morphic Web Application

Post provided by Gabriella Leighton

Online Images: A Treasure Trove of Ecological Data

In the proclaimed ‘information age’, where answers are available at the click of a button or a swipe of a finger, we have become accustomed to the ability to get an almost instant grasp of any topic. Other fields are already making use of this wealth of easily accessible online data, but biologists and ecologists tend to let it slip by. However, this attitude is slowly beginning to change. Some ecological and evolutionary studies are emerging that have used the internet to gather data – through online citizen science projects (e.g. Evolution MegaLab) or databases (e.g. using Google Trends) – but few have used existing data, particularly publicly available data from image repositories.

We were curious to apply the concept of using existing images on the internet to a fascinating visual biological phenomenon: colour polymorphism (or the occurrence of multiple discrete colour phenotypes). To do this, we planned to exploit an existing penchant people have for uploading photographs of animals to the Internet.

Our search phrases included the common and scientific name of the species, as well as a location-specific term

Our search phrases included the common and scientific name of the species, as well as a location-specific term

Continue reading

Movement Ecology: Stepping into the Mainstream

Post provided by Theoni Photopoulou

“Movement is the glue that ties ecological processes together”
from Francesca Cagnacci et al. 2010

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

Movement ecology is a cross-disciplinary field. Its main aim is to quantitatively describe and understand how movement relates to individual and population-level processes for resource acquisition and, ultimately, survival. Today the study of movement ecology hinges on two 21st century advances:

  1. Animal-borne devices/tags (biologging science, Hooker et al., 2007) and/or remote sensing technology to quantify movement and collect data from remote or otherwise challenging environments
  2. Computational power sufficient to manipulate, process and analyse substantial volumes of data

Although datasets often involve small numbers of individuals, each individual can have thousands – sometimes even millions – of data points associated with it. Study species have tended to be large birds and mammals, due to the ease of tag attachment. However, the trend for miniaturisation of tags and the development of remote detection technologies (such as radar, e.g. Capaldi et al., 2000), have allowed researchers to track and study ever smaller animals. Continue reading

Just snap it! Using Digital Cameras to Discover What Birds Eat

Post provided by Davide Gaglio and Richard Sherley

Digital photography has revolutionised the way we view ourselves, each other and our environment. The use of automated cameras (including camera traps) in particular has provided remarkable opportunities for biological research. Although mostly used for recreational purposes, the development of user-friendly, versatile auto-focus digital single lens reflex (DSLR) cameras allows researchers to collect large numbers of high quality images at relatively little cost.

These cameras can help to answer questions such as ‘What does that species feed its young?’ or ‘How big is this population?’, and can provide researchers with glimpses of rare events or previously unknown behaviours. We used these powerful research tools to develop a non-invasive method to assess the diets of birds that bring visible prey (e.g. prey carried in the bill or feet) back to their chicks. Continue reading

Scat Collection Protocols for Dietary DNA Metabarcoding

DNA dietary analysis is a non-invasive tool used to identify the food consumed by vertebrates. The method relies on identifying prey DNA in the target animals’ scats. It’s especially useful for marine animals such as seals and seabirds as it is difficult to watch their feeding events.

In the video below, Julie McInnes describes scat collection protocols that she (along with Rachael Alderman, Bruce Deagle, Mary-Anne Lea, Ben Raymond and Simon Jarman) developed to optimise the detection of food DNA in vertebrate scat samples. The authors use the shy albatross to demonstrate their new methods.

Continue reading