
University of Notre Dame scientists have now published the first detailed investigation of just how small (or big) environmental DNA, or eDNA, particles really are, and their results provide important guidance for all eDNA monitoring programs.
Like investigators combing a crime scene for DNA traces from suspects or victims, ecologists now apply similar genetic tests to search the environment for important species. These traces of animal or plant DNA in water, soil and air are called environmental DNA. Aquatic eDNA monitoring is emerging as a powerful way to detect harmful species like invasive Asian carp and Burmese pythons or beneficial species like Chinook salmon and Idaho giant salamander. Because this tool is new, little is known about these tiny DNA-containing bits and how to best capture them from water.
Using common carp, one of the 30 worst invasive species worldwide, the researchers found eDNA in particles ranging from smaller than a mitochondrion to larger than a grain of table salt. Most of the eDNA was in particles between 1 and 10 micrometers, about the same diameter as a single strand of spider silk. Continue reading “Notre Dame study reveals that particle size matters for environmental DNA monitoring”



