Biomechanically-Aware Behaviour Recognition using Accelerometers

Post provided by Pritish Chakravarty

 

Accelerometers, Ground Truthing, and Supervised Learning

Accelerometers are sensitive to movement and the lack of it. They are not sentient and must recognise animal behaviour based on a human observer’s cognition. Therefore, remote recognition of behaviour using accelerometers requires ground truth data which is based on human observation or knowledge. The need for validated behavioural information and for automating the analysis of the vast amounts of data collected today, have resulted in many studies opting for supervised machine learning approaches.

Ground-truthing. The acceleration data stream (recorded using the animal-borne data logger, bottom-left) is synchronised with simultaneously recorded video (near top right). Picture credit: Kamiar Aminian

In such approaches, the process of ground truthing involves time-synchronising acceleration signals with simultaneously recorded video, having an animal behaviour expert create an ethogram, and then annotate the video according to this ethogram. This links the recorded acceleration signal to the stream of observed animal behaviours that produced it. After this, acceleration signals are chopped up into finite sections of pre-set size (e.g. two seconds), called windows. From acceleration data within windows, quantities called ‘features’ are engineered with the aim of summarising characteristics of the acceleration signal. Typically, ~15-20 features are computed. Good features will have similar values for the same behaviour, and different values for different behaviours.

Continue reading

An interview with the editors of “Population Ecology in Practice”: Part II

Post provided by Daniel Caetano

Today we bring the second part of an interview with Dennis Murray and Brett Sandercock about their brand new book in population ecology methods: “Population Ecology in Practice.” This time we talked about their experience as editors, including some useful advice for new editors.

If you missed the first part of the interview, check it out here.

Population Ecology in Practice introduces a synthesis of analytical and modelling approaches currently used in demographic, genetic, and spatial analyses. Chapters provide examples based on real datasets together with a companion website with study cases and exercises implemented in the R statistical programming language.

Continue reading

Uma breve história sobre o pacote R ‘metan’

Post ESCRITO POR Tiago Olivoto

This post is also available in English

Em nosso recente artigo na Methods in Ecology and Evolution, Alessandro D. Lúcio e eu descrevemos um novo pacote R para análise de ensaios multi-ambientes chamado metan. Ensaios multi-ambientes são um tipo de ensaio em programas de melhoramento de plantas, onde vários genótipos são avaliados em um conjunto de ambientes. A análise desses dados requer a combinação de várias abordagens, incluindo manipulação, visualização e modelagem de dados. A versão estável mais recente do metan (v1.5.1) está disponível agora no repositório CRAN. Então, pensei em compartilhar a história da minha primeira incursão no uso do R criando um pacote e submetendo um artigo para uma revista que nunca havia submetido antes.

Continue reading

A brief history about the R package ‘metan’

Post provided by Tiago Olivoto

Este post também pode ser lido em Português

In our recent paper in Methods in Ecology and Evolution, Alessandro Lúcio and I describe a new R package, metan, for multi-environment trial analysis. Multi-environment trials are a kind of trial in plant breeding programs where several genotypes are evaluated in a set of environments. Analyzing such data requires the combination of several approaches including data manipulation, visualization and modelling. The latest stable version of metan (v1.5.1) is now on CRAN. So, I want to share the history about my first foray into using R, creating an R package, and submitting a paper to a journal that I’ve never had submitted before.

Continue reading

An interview with the editors of “Population Ecology in Practice”: Part I

Post provided by Daniel Caetano

Today we bring the first part of an interview with Dennis Murray and Brett Sandercock about their brand new book in population ecology methods: “Population Ecology in Practice.” The editors were kind enough to share some interesting backstage information with us.

Snowshoe hare in winter

Population Ecology in Practice introduces a synthesis of analytical and modelling approaches currently used in demographic, genetic, and spatial analyses. Chapters provide examples based on real datasets together with a companion website with study cases and exercises implemented in the R statistical programming language.

Stay tuned for the second part of this interview, where we talk about some of the challenges of editing a large book and the editors share essential advice for anyone looking into leading such a project!

Continue reading

10th Anniversary Volume 1: The Art of Modelling Range-Shifting Species

Post provided by Jane Elith, Mike Kearney and Steven Phillips  

To celebrate the 10th Anniversary of the launch of Methods in Ecology and Evolution, we are highlighting an article from each volume to feature in the Methods.blog. For Volume 1, we have selected ‘The art of modelling range-shifting species’ by Elith et al. (2010).  In this post, first author, Professor Jane Elith, discusses the background and key concepts of the article, and how things have changed since the paper was published.

Illustration of the idea that model settings affect prediction.

We started work on this manuscript around 2008, prompted by increasing use of species distribution models for climate change and invasive species problems. At that stage there was growing recognition of the problems in these applications (e.g. see a recent MEE review on transferability) but relatively few tools for dealing with them. In our view, if correlative models are to be used for such purposes, the data and models require special attention.

Continue reading

Anacapa Toolkit: Automating the Cataloguing of Biodiversity

Post provided by Emily Curd

Imagine that you want to catalogue all of the biodiversity (all of the living organisms) from a particular location; how many trained experts would that require? How many person hours would it take to collect and identify all of the rare, well-disguised, and microscopic organisms? How many of these organisms would have to be removed from the environment and taken back to a lab for taxonomic analysis.

With eDNA, you can survey the presence of this gorgeous opalescent nudibranch without capturing or even touching it.
©Natural History Museum of Los Angeles County — Amanda Bemis & Brittany Cumming

Although there is no substitute for human expertise, we have begun using the traces of DNA that organisms leave behind (e.g. excretions, skin and hair cells) in the environment to catalogue biodiversity. These traces of DNA, referred to as environmental DNA, can persist in the environment for minutes or can persist for centuries depending on where they end up. This field of environmental DNA (eDNA) is rapidly becoming an effective tool to complement surveys of biodiversity, both past and present.

Continue reading

Reconnecting the Web of Life: Rewiring and Network Robustness

Post provided by VINICIUS A. G. BASTAZINI, JEF VIZENTIN-BUGONI and JINELLE H. SPERRY

Esta publicação no blogue também está disponível em português

Species Loss and Cascading Effects

Scale-throated Hermit (Phaethornis eurynome). ©Pedro Lorenzo.

Scale-throated Hermit (Phaethornis eurynome). ©Pedro Lorenzo.

Minimising the effects the ongoing Anthropocene mass extinction has become one of the main challenges of our era. The data suggest that the current rate of species loss is 100–1,000 greater than the background rates seen in the geological record. “But does it really matter if species are lost?” This question has permeated social and political debates. It’s usually used to demean conservation efforts. But it has also intrigued conservation scientists.

We know that species don’t occur alone in their environment. They’re entangled by their interactions, forming complex networks. In these networks the loss of one species may result in the loss of other species that depend on it. This process is known as co-extinction. Estimates of the magnitude of past and future extinction rates have often failed to account for the interdependence among species and the consequences of primary species loss on other species though. Continue reading

Religando a rede da vida: Reconexões de interações e a robustez de redes ecológicas

Postagem fornecida por VINICIUS A. G. BASTAZINI, JEF VIZENTIN-BUGONI and JINELLE H. SPERRY

This post is also available in English

Perda de espécies e efeitos em cascata

Scale-throated Hermit (Phaethornis eurynome). ©Pedro Lorenzo.

Rabo-branco-de-garganta-rajada (Phaethornis eurynome). ©Pedro Lorenzo.

Minimizar os efeitos do atual processo de extinção em massa do Antropoceno se tornou um dos principais desafios da nossa era. Os dados sugerem que a taxa atual de perda de espécies é 100-1.000 vezes maior do que as taxas de fundo observadas no registro geológico. “Mas realmente importa se uma espécie é perdida?” Essa questão que permeia os debates sociais e políticos, geralmente para desqualificar os esforços de conservação, também tem intrigado os cientistas da conservação.

Sabemos que as espécies não ocorrem sozinhas em seu ambiente. Elas estão  interligadas por suas interações ecológicas, formando redes complexas. Nessas redes, a perda de uma espécie pode resultar em um efeito dominó, culminando na perda secundária de outras espécies. Esse processo é conhecido como co-extinção. As estimativas da magnitude das taxas de extinção passadas e futuras muitas vezes falharam em explicar a interdependência entre as espécies e as conseqüências da perda primaria de espécies. Continue reading

Responding to New Weeds Needs Speed: Spatial Modelling with riskmapr Can Help

Post provided by JENS FROESE

Disclaimer: this post is NOT about the drug or the TV series, but about invasive alien plants. Yes, even biologists often refer to them as ‘weeds’.

Responding to New Weed Incursions

Responding to new weed incursions early and rapidly is very important. ©Panda8pie2

Responding to new weed incursions early and rapidly is very important. ©Panda8pie2

Weeds are a major threat to biodiversity and agricultural industries globally. New alien plant species are constantly introduced across borders, regions or landscapes. We know that some (such as those listed in the IUCN Global Invasive Species Database) are likely become problematic invasive weeds from experiences elsewhere.

When a weed is first introduced, population growth and spread is typically slow. This ‘invasion lag’ may be due to straightforward mathematics (population dynamics) as well as geography, environmental change or genetics. In any case, the lag period often presents the only window of opportunity where weed eradication or effective containment can be achieved. So, responding to new weed incursions early and rapidly is very important. Anyone who has ever battled with a bad weed infestation in their backyard knows it’s best to get in early and decisively! But decisions about where to target surveillance and control activities are often made under considerable time, knowledge and capacity constraints. Continue reading