Advances in Modelling Demographic Processes: A New Cross-Journal Special Feature

Analysis of datasets collected on marked individuals has spurred the development of statistical methodology to account for imperfect detection. This has relevance beyond the dynamics of marked populations. A couple of great examples of this are determining site occupancy or disease infection state.

EURING Meetings

The regular series of EURING-sponsored meetings (which began in 1986) have been key to this development. They’ve brought together biological practitioners, applied modellers and theoretical statisticians to encourage an exchange of ideas, data and methods.

This new cross-journal Special Feature between Methods in Ecology and Evolution and Ecology and Evolution, edited by Rob Robinson and Beth Gardner, brings together a collection of papers from the most recent EURING meeting. That meeting was held in Barcelona, Spain, 2017, and was hosted by the Museu de Ciènces Naturals de Barcelona. Although birds have provided a convenient focus, the methods are applicable to a wide range of taxa, from plants to large mammals. Continue reading

Spatial Cross-Validation of Species Distribution Models in R: Introducing the blockCV Package

Post provided by Roozbeh Valavi

این پست به فارسی موجود است

Modelling species distributions involves relating a set of species occurrences to relevant environmental variables. An important step in this process is assessing how good your model is at figuring out where your target species is. We generally do this by evaluating the predictions made for a set of locations that aren’t included in the model fitting process (the ‘testing points’).

Random splitting of the species occurrence data into training and testing points

Random splitting of the species occurrence data into training and testing points

The normal, practical advice people give about this suggests that, for reliable validation, the testing points should be independent of the points used to train the model. But, truly independent data are often not available. Instead, modellers usually split their data into a training set (for model fitting) and a testing set (for model validation), and this can be done to produce multiple splits (e.g. for cross-validation). The splitting is typically done randomly. So testing points sometimes end up located close to training points. You can see this in the figure to the right: the testing points are in red and training points are in blue. But, could this cause any problem? Continue reading

اعتبارسنجی متقاطع مکانی در مدلسازی توزیع گونه‌‌ها

نویسنده: روزبه وَلَوی

This post is available in English

مدلسازی توزیع گونه‌ها به تخمین و برآورد ارتباط بین مجموعه‌ای از نقاط حضور گونه با متغیرهای زیست‌محیطی مرتبط می پردازد. یکی از مراحل اساسی این فرایند، ارزیابی قدرت مدل برای پیش­بینی مکان‌هایی است که احتمال حضورگونه در آنجا وجود دارد. این کار اغلب با ارزیابی پیش­بینی انجام شده در مجموعه‌ای ازنقاط که در فرآیند مدلسازی مورد استفاده قرار نگرفته اند (نقاط آزمایشی) صورت می‌گیرد.

تقسیم تصادفی داده‌های حضور گونه به نقاط آزمایشی و آموزشی

تقسیم تصادفی داده‌های حضور گونه به نقاط آزمایشی و آموزشی

مطالعات پیشین بر این نکته تاکید دارند که به منظور ارزیابی معتبر، نقاط آزمایشی باید مستقل از نقاط آموزشی باشند، این درحالیست که داده مستقل واقعی به ندرت در دسترس می باشد. به همین دلیل، در فرایند مدلسازی معمولا داده‌های موجود را به دو قسمت داده‌های آموزشی (برای کالیبره کردن مدل) و داده های آزمایشی (برای ارزیابی دقت مدل) تقسیم می‌کنند، این استراتژی می‌تواند چند قسمتی هم باشد (برای مثال اعتبارسنجی متقاطع یا cross-validation). از آنجاییکه این تقسیم بندی معمولا بصورت تصادفی انجام می‌شود، بنابراین گاهی اوقات نقاط آزمایشی در فواصل نزدیک به نقاط آموزشی قرار می‌گیرند. شکل زیر این مساله را به خوبی نشان می دهد که در آن نقاط آزمایشی به رنگ قرمز و نقاط آموزشی آبی هستند. اما آیا این مساله می‌تواند مشکلی ایجاد کند؟ Continue reading

How do You Know that the Top Dog is Really the Top Dog? Using Elo-Ratings and Bayesian Inference to Determine Rankings in Animal Groups

Post provided by Julia Fischer

A female chacma baboon (rear) signals her submission to another female by raising her tail. ©Julia Fischer.

A female chacma baboon (rear) signals her submission to another female by raising her tail. ©Julia Fischer.

Anyone who studies social animals in the wild (or human groups, for that matter), will soon find that some individuals threaten or attack others frequently, while others try to get out of the way or signal their submission in response to aggression. Observers tally the outcome of such aggressive interactions between any given two individuals (or ‘dyads’) and try to deduce the rank hierarchy from such winner-loser matrices. One drawback of this approach is that all temporal information is lost.

Imagine Royal, a baboon, dominating over Power, another baboon, 20 times, and Power dominating over Royal 20 times as well. If we just look at these data, we might think that they have the same fighting ability and similar ranks. But, if we know that Royal beat Power the first 20 of the interactions, then Power beat Royal in all further interactions, we’d come to a totally different conclusion. We’d infer that Power had toppled Royal and a rank change had taken place.

How do Rank Hierarchies Change Over Time?

One prominent method that takes the temporal dynamics of winner-loser interactions into account was originally developed to calculate the relative skill level of chess players. This method was introduced by Arpad Elo and is hence known as Elo-Rating. Elo-Rating has also been applied to rate the relative skills in a variety of competitive fields, including Major League Baseball, video games, and Scrabble. Continue reading

The Manager’s Dilemma: Which Species to Monitor?

Post provided by Payal Bal and Jonathan Rhodes

The greater bilby (M.Lagotis). ©Save the Bilby Fund

The greater bilby (M.Lagotis). ©Save the Bilby Fund

Imagine you’re the manager of a national park. One that’s rich in endemic biodiversity found nowhere else on the planet. It’s under the influence of multiple human pressures causing irreversible declines in the biodiversity, possibly even leading to the extinction of some of the species. You’re working with a complex system of multiple species and threats, limited knowledge of which threats are causing the biggest declines and limited resources. How do you decide what course of action to take to conserve the biodiversity of the park? This is the dilemma faced by biodiversity managers across the globe.

In our recent paper, ‘Quantifying the value of monitoring species in multi‐species, multi‐threat systems’, we address this problem and propose a method using value of information (VOI) analysis. VOI estimates the benefit of monitoring for management decision-making. Specifically, it’s a valuation tool that can be used to disentangle the trade-offs in competing monitoring actions. It helps managers decide how to invest (or whether to invest) their money in monitoring actions when faced with imminent biodiversity declines and the urgency of efficient conservation action. Continue reading

Statistical Ecology Virtual Issue

To celebrate the International Statistical Ecology Conference and British Ecological Society Quantitative Ecology Annual Meeting, Laura Graham and Susan Jarvis have compiled a virtual issue celebrating all things statistical and quantitative in ecology.

Statistical and quantitative methods within ecology have increased substantially in recent years. This rise can be attributed both to the growing need to address global environmental change issues, as well as the increase in data sources to address these challenges. Continue reading

Fourier Methods Gain Wide Appeal for Tropical Phenology Analysis

Post provided by Emma Bush

Lopé National Park. ©Jeremy Cusack

Lopé National Park. ©Jeremy Cusack

Like all living things, plant species must reproduce to persist. Key stages in successful plant reproduction must be carefully timed to make sure resources are available and conditions are optimal. There will be little success if flowers mature in bad weather conditions for their insect pollinators or if fruits ripen but the seed dispersers have migrated elsewhere.

Because plants rely on the abiotic environment for sunlight, nutrients and water, and in some cases for the dispersal of pollen and seeds, it is not surprising that their life stages are closely linked to environmental cycles. Continue reading

Can Opportunistically Collected Citizen Science Data Create Reliable Habitat Suitability Models for Less Common Species?

Post provided by Ute Bradter, Mari Jönsson and Tord Snäll

Detta blogginlägget är tillgängligt på svenska

Opportunistically collected species observation data, or citizen science data, are increasingly available. Importantly, they’re also becoming available for regions of the world and species for which few other data are available, and they may be able to fill a data gap.

Siberian jay ©Ute Bradter

Siberian jay ©Ute Bradter

In Sweden, over 60 million citizen science observations have been collected – an impressive number given that Sweden has a population of about 10 million people and that the Swedish Species Observation System, Artportalen, was created in 2000. For bird-watchers (or plant, fungi, or other animal enthusiasts), this is a good website to bookmark. It will give you a bit of help in finding species and as a bonus, has a lot of pretty pictures of interesting species. Given the amount of data citizen science can provide in areas with few other data, it’s important to evaluate whether they can be used reliably to answer questions in applied ecology or conservation. Continue reading