Monitoring Ecosystems through Sound: The Present and Future of Passive Acoustics

Post provided by Ella Browning and Rory Gibb

AudioMoth low-cost, open-source acoustic sensor ©openacousticdevices.info

AudioMoth low-cost, open-source acoustic sensor ©openacousticdevices.info

As human impacts on the world accelerate, so does the need for tools to monitor the effects we have on species and ecosystems. Alongside technologies like camera traps and satellite remote sensing, passive acoustic monitoring (PAM) has emerged as an increasingly valuable and flexible tool in ecology. The idea behind PAM is straightforward: autonomous acoustic sensors are placed in the field to collect audio recordings. The wildlife sounds within those recordings are then used to calculate important ecological metrics – such as species occupancy and relative abundance, behaviour and phenology, or community richness and diversity.

The Pros and Cons of Passive Acoustic Monitoring

Using sound to monitor ecosystems, rather than traditional survey methods or visual media, has many advantages. For example, it’s much easier to survey vocalising animals that are nocturnal, underwater or otherwise difficult to see. Also, because acoustic sensors capture the entire soundscape, it’s possible to calculate acoustic biodiversity metrics that aim to describe the entire vocalising animal community, as well as abiotic elements in the environment.

The use of PAM in ecology has been steadily growing for a couple of decades, mainly in bat and cetacean studies. But with sensor costs dropping and audio processing tools improving, there’s currently a massive growth in interest in applying acoustic methods to large-scale or long-term monitoring projects. As very low-cost sensors such as AudioMoth start to emerge, it’s becoming easier to deploy large numbers of sensors in the field and start collecting data. Continue reading

In Conservation Planning, Some Data are More Important Than Others

Provided by Heini Kujala and José Lahoz-Monfort

Esta entrada de blog también está disponible en español

Spatial Conservation Planning and the Quest for Perfect Data

Conservation planners and managers often need to make decisions with imperfect information. When deciding what action to take or how to divide resources between candidate locations, we rarely have all the information we’d like on what species are present at a site or which areas are most critical for supporting their population viability. A large volume of ecological research focuses on answering these very questions.

To make conservation decisions, we need other types of data as well. These include information on things like the cost of carrying out a given conservation action, current condition of sites, the distribution and intensity of threats in a region, and much more. Many conservation problems are spatial, meaning that we often need to decide between multiple candidate locations and that there are spatial dependencies between sites that need to be accounted for. All these different pieces of information are needed to make cost-efficient and effective conservation decisions.

Ecologists and conservation biologists are usually concerned about the completeness and accuracy of the ecological data used to make these decisions (understandably). But less effort has been spent in researching and verifying the accuracy of the types of data mentioned above. At the same time, we have relatively poor understanding of how data gaps influence solutions optimised across multiple species and locations, and the relative importance of gaps in different types of data. This is what we set out to find in ‘Not all data are equal: Influence of data type and amount in spatial conservation prioritisation’. Continue reading

En la planificación de la conservación, algunos datos son más importantes que otros

Por Heini Kujala y José Lahoz-Monfort

This blog post is also available in English

La planificación espacial de la conservación y la búsqueda de datos perfectos

Los planificadores y administradores de la conservación a menudo necesitan tomar decisiones con información imperfecta. Al decidir qué acción tomar o cómo dividir recursos entre diferentes localizaciones, rara vez tenemos toda la información que nos gustaría sobre qué especies están presentes en un lugar o qué áreas son las más críticas para respaldar su viabilidad poblacional. Un gran volumen de investigación ecológica se focaliza en responder a estas preguntas.

Para tomar decisiones de conservación, también necesitamos otros tipos de datos, incluyendo, entre otros, información sobre el costo de llevar a cabo una acción de conservación determinada, la condición actual de los diferentes sitios, y la distribución e intensidad de las amenazas en una región. Muchos problemas de conservación son espaciales, es decir que a menudo tenemos que decidir entre varias ubicaciones candidatas, con dependencias espaciales entre ellas. Todas estas diferentes piezas de información son necesarias para tomar decisiones de conservación rentables y efectivas.

Los ecólogos y los biólogos de la conservación suelen estar preocupados por la integridad y exactitud de los datos ecológicos utilizados para tomar estas decisiones (comprensiblemente). Pero se ha dedicado menos esfuerzo a investigar y verificar la exactitud de los otros tipos de datos mencionados anteriormente. Además, tenemos una comprensión relativamente pobre de cómo las lagunas en los datos influyen en las soluciones optimizadas en múltiples especies y ubicaciones, y la importancia relativa de las lagunas en los diferentes tipos de datos. Es esto precisamente lo que nos propusimos investigar en el artículo ‘Not all data are equal: Influence of data type and amount in spatial conservation prioritisation’. Continue reading

New Research Shows Pretend Porpoise Sounds are Helping Conservation Efforts

Below is a press release about the Methods in Ecology and Evolution article ‘Estimating effective detection area of static passive acoustic data loggers from playback experiments with cetacean vocalisations‘ taken from Swansea University.

Harbour porpoise under the surface - I. Birks, SeaWatchFoundation

Harbour porpoise under the surface – I. Birks, SeaWatchFoundation

An examination into the detection of harbour porpoises is helping to give new understanding of effective monitoring of species under threat from anthropogenic activities such as fisheries bycatch and coastal pollution.

In a first study of its kind, Dr Hanna Nuuttila, currently at Swansea University’s College of Science – together with scientists from the German Oceanographic Museum, the University of St Andrews and Bangor University – revealed how playing back porpoise sounds to an acoustic logger can be used to assess the detection area of the device, a metric typically required for effective monitoring and conservation of protected species.

Continue reading

How do You Know that the Top Dog is Really the Top Dog? Using Elo-Ratings and Bayesian Inference to Determine Rankings in Animal Groups

Post provided by Julia Fischer

A female chacma baboon (rear) signals her submission to another female by raising her tail. ©Julia Fischer.

A female chacma baboon (rear) signals her submission to another female by raising her tail. ©Julia Fischer.

Anyone who studies social animals in the wild (or human groups, for that matter), will soon find that some individuals threaten or attack others frequently, while others try to get out of the way or signal their submission in response to aggression. Observers tally the outcome of such aggressive interactions between any given two individuals (or ‘dyads’) and try to deduce the rank hierarchy from such winner-loser matrices. One drawback of this approach is that all temporal information is lost.

Imagine Royal, a baboon, dominating over Power, another baboon, 20 times, and Power dominating over Royal 20 times as well. If we just look at these data, we might think that they have the same fighting ability and similar ranks. But, if we know that Royal beat Power the first 20 of the interactions, then Power beat Royal in all further interactions, we’d come to a totally different conclusion. We’d infer that Power had toppled Royal and a rank change had taken place.

How do Rank Hierarchies Change Over Time?

One prominent method that takes the temporal dynamics of winner-loser interactions into account was originally developed to calculate the relative skill level of chess players. This method was introduced by Arpad Elo and is hence known as Elo-Rating. Elo-Rating has also been applied to rate the relative skills in a variety of competitive fields, including Major League Baseball, video games, and Scrabble. Continue reading

All You (Possibly) Ever Wanted to Know about ‘Trap Nests’

Post provided by Michael Staab

What are ‘Trap Nests’ and What are They Good For?

Females are attracted to the hollow material in trap nests.

Females are attracted to the hollow material in trap nests.

When thinking of bees and wasps, most people have social insects living in colonies in mind. But most species are actually solitary. In these species, every female builds her own nest and does not care for the offspring once nest construction is completed. Most of those species nest in the ground. Several thousand species of bees and wasps use pre-existing above-ground cavities though (such as hollow twigs and stems, cracks under bark, or empty galleries of wood-boring insects).

To keep you in suspense, I’ll resolve the importance of studying cavity-nesting species later in this blog post. First, I’ll introduce you to one of the more elegant research methods in ecology: trap nests. To study and collect these cavity-nesting species, you can take advantage of their nesting preferences. By exposing artificial cavities and offering access to an otherwise restricted nesting resource, you can attract females searching for suitable nesting sites.

Building these trap nests is simple, but the design can vary greatly. Many designs and materials can be used to build the artificial nesting sites, such as drilling holes in wooden blocks or packing hollow plant material (e.g. reeds) in plastic tubes. Once females find the trap nest and finish their nest construction, the developing offspring are literally ‘trapped’ in their nests. They can then be collected, their trophic interactions (e.g. food and natural enemies) observed, and the specimens can be reared for identification. Continue reading

How Many Animals are Infected with Chronic Wasting Disease?

Post provided by Hildegunn Viljugrein

©Alexandre Buisse

©Alexandre Buisse

The discovery of Chronic Wasting Disease (CWD) in Norway in 2016 has led to extensive measures and testing of deer in Norway. Since 2018 there have been similar measures within the EU. But how many deer need to be tested before we can be (almost) certain that a population is not infected by CWD?

In our article – ‘A method that accounts for differential detectability in mixed samples of long‐term infections with applications to the case of Chronic Wasting Disease in cervids’ – we provide important tools for estimation of prevalence and likelihood of finding infected animals in a given population. The paper is a result of a collaborative work between a multidisciplinary group of scientists from the Norwegian Veterinary Institute, Norwegian Institute for Nature Research and Prof. Atle Mysterud from Centre for Ecological and Evolutionary Synthesis at the University of Oslo. Continue reading

Spatial Capture-Recapture: The Pros and Cons of Aggregating Detections

Post provided by Cyril Milleret

Spatial Capture-Recapture and Computation Time

SCR models simultaneously estimate the detection function and density of individual activity centres. A half-normal detection model is generally used.

SCR models simultaneously estimate the detection function and density of individual activity centres. A half-normal detection model is generally used.

The estimation of population size is one of the primary goals and challenges in wildlife ecology. Within the last decade and a half, a new class of tools has emerged, allowing us to estimate abundance and other key population parameters in specific areas. So-called spatial capture-recapture (SCR) models are growing in popularity not only because they can map abundance, but also because they can be fitted to data collected from a variety of monitoring methods. For example, the ever increasing use of non-invasive monitoring methods, such as camera trapping and non-invasive genetic-sampling, is one of the reason that makes SCR models so popular.

One other strengths of SCR models is the ability to make population level inferences. But the wider the region you’re monitoring, the greater the computational burden, challenging the use of such methods at really large scale. Continue reading

R2ucare: An Interview with Olivier Gimenez

At the International Statistical Ecology Conference in St Andrews this July (ISEC 2018) David Warton interviewed Olivier Gimenez about R2ucare. R2ucare is an R package for goodness-of-fit tests for capture-recapture models. The full Methods in Ecology and Evolution article on this package – R2ucare: An r package to perform goodness‐of‐fit tests for capture–recapture models – was published in the July 2018 issue of the journal.

David and Olivier also discuss some tips for creating R packages. They mention that if you’re new to writing R packages, there are some excellent resources online. Here’s one of them: A Quickstart Guide for Building Your First R Package

We’ll have more of David’s interviews from the ISEC coming out over the next few weeks. Keep an eye out for them here and on the Methods in Ecology and Evolution YouTube channel.

You can find David’s first ISEC interview (with Kate Jones) here.

Bats, Acoustic Methods and Conservation 4.0: An Interview with Kate Jones

At this year’s International Statistical Ecology Conference (ISEC 2018) David Warton interviewed Kate Jones, Chair in Ecology and Biodiversity at University College, London. Their conversation mainly focused on how to classify bats from acoustic data, with particular reference to ‘Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design‘ by Veronica Zamora‐Gutierrez et al. They also discuss Conservation 4.0!

We’ll have more of David’s interviews from the ISEC coming out over the next few weeks. Keep an eye out for them here and on the Methods in Ecology and Evolution YouTube channel.