Ultraconserved Elements are Widely Shared across the Tree of Life

Post provided by SILAS BOSSERT

Large-scale phylogenies are increasingly fueled by genomic-data from Ultraconserved Elements. ©Silas Bossert

Large-scale phylogenies are increasingly fuelled by genomic-data from Ultraconserved Elements. ©Silas Bossert

Sequencing ultraconserved DNA for phylogenetic research is a hot topic in evolution right now. As the name implies, Ultraconserved Elements (UCEs) are regions of the genome that are nearly identical among distantly related organisms. They can provide useful information for difficult phylogenetic questions. The list of advantages is long – among others, UCEs are:

A key reason for the method’s success is the developers’ commitment to full transparency, active tutoring, and willingness to help next-gen sequencing newbies like me to get started. Help is just a github-issue post away.

It took little to convince me that I wanted to use UCEs to reconstruct the phylogeny of one of my favourite groups of bees. I eventually met that objective but it won’t be part of this post. This blog post is about the journey to get there—the background story to the article ‘On the universality of target‐enrichment baits for phylogenomic research’. Continue reading

The Dark and Bright Sides of Phylogenetics and Comparative Methods

Five years ago at Evolution 2014, ‘The Dark Side of Phylogenetics’ symposium (organised by Natalie Cooper) explored some of the issues with phylogenetic comparative methods (PCMs). This year at Evolution 2019, Michael Landis and Rosana Zenil-Ferguson are organising a contrasting ‘Bright Side of Phylogenetics‘ spotlight session (featuring Michael Matschiner). They aim to promote research that has overcome these pitfalls and that explores innovations in phylogenetics. Clearly they found our lack of faith disturbing.

Natalie and Michael have created a Virtual Issue to complement the spotlight session: Phylogenetics and Comparative Methods: The Bright and Dark Sides. It highlights recent Methods in Ecology and Evolution papers that feature either the ‘Bright Side’ or ‘Dark Side’ of phylogenetics and comparative methods. This Virtual Issue also highlights the diversity of researchers around the world working on these exciting questions. We hope you have a good feeling about it! Continue reading

Stereo DOV: A Non-Invasive, Non-Destructive Way to Study Fish Populations

It’s more important than ever for us to have accurate information to help marine conservation efforts. Jordan Goetze and his colleagues have provided the first comprehensive guide for researchers using diver operated stereo-video methods (or stereo-DOVs) to survey fish assemblages and their associated habitat.

But what is Stereo DOV? What makes it a better method than the traditional UVC (Underwater Visual Census) method? And when should you use it? Find out in this video:

To find out more about stereo DOVs, read the full Methods in Ecology and Evolution article ‘A field and video analysis guide for diver operated stereo‐video
(No Subscription Required).

If you’re using interesting new field techniques like this, why not submit a Practical Tools manuscript about them? You can find out more about Practical Tools manuscripts here.

Using Molecular Power to Reconstruct Hyperdiverse Food Webs

Post provided by JORDAN CASEY

Coral Reefs: The Ocean’s Most Extravagant Buffet

Coral reefs are home to an incredibly diverse array of species ©Jordan Casey

Coral reefs are home to an incredibly diverse array of species ©Jordan Casey

There are an estimated 830,000 species on coral reefs worldwide. At some stage in their lives, nearly all of these species are consumed as prey items. In this super diverse buffet of fishes, corals, crabs, worms, and other critters, the number of possible interactions between predators and prey is nearly inexhaustible.

The extreme diversity of coral reefs has fascinated naturalists for centuries. Pinpointing predator-prey dynamics is essential to fully understand coral reef ecosystem dynamics, and visual analysis of gut contents has been a staple technique of coral reef ecologists. While the joy of spending copious hours looking through a microscope at half-digested marine mush is undeniable, this type of visual inspection has limitations. Even so, visual gut content analysis (along with stable isotope analysis and behavioural observations) has showcased a highly complex dietary network.

To digest this extreme complexity and surmount the hurdle of dietary unknowns, researchers frequently lump fishes into broad trophic categories, such as ‘mobile herbivores’. Broad generalisations are pragmatic and may be help us detect broad ecological trends, but they oversimplify species’ actual dietary preferences. As coral reefs are changing due to anthropogenic disturbances, it’s critical to thoroughly examine how well trophic groupings capture dietary linkages among reef organisms. Continue reading

Assessing Sea Turtle Populations: Can We Get a Hand From Drones and Deep Learning?

Post provided by PATRICK GRAY

An olive ridley sea turtle in Ostional, Costa Rica. ©Vanessa Bézy.

Understanding animal movement and population size is a challenge for researchers studying any megafauna species. Sea turtles though, add a whole additional level of complexity. These wide-ranging, swift, charismatic animals spend much of their time underwater and in remote places. When trying to track down and count turtles, this obstacle to understanding population size becomes a full-on barricade.

Censusing these animals doesn’t just satisfy our scientific curiosity. It’s critical for understanding the consequences of unsound fishing practices, the benefits of conservation policy, and overall trends in population health for sea turtles, of which, six out of seven species range from vulnerable to critically endangered. Continue reading

Where do Animals Spend Their Time and Energy? Theory, Simulations and GPS Trackers Can Help Us Find Out

Post provided by MATT MALISHEV (@DARWINANDDAVIS)

 An adult sleepy lizard with a GPS tracker and body temperature logger strapped to her tail. ©Mike Bull.


An adult sleepy lizard with a GPS tracker and body temperature logger strapped to her tail. ©Mike Bull.

Changes in temperature and available food determine where and when animals move, reproduce, and survive. Our understanding of how environmental change impacts biodiversity and species survival is well-established at the landscape, country and global scales. But, we know less about what could happen at finer space and time scales, such as within habitats, where behavioural responses by animals are crucial for daily survival.

Simulating Movement and Daily Survival with Individual-Based Movement Models

Key questions at these scales are how the states of individuals (things like body temperature and nutritional condition) influence movement decisions in response to habitat change, and how these decisions relate to patchiness in microclimates and food. So we need tools to make reliable forecasts of how fine-scale habitat use will change under future environments. Individual-based movement simulation models are powerful tools for these kinds of studies. They let you construct habitats that vary in temperature and food conditions in both space and time and ask ‘what if’ questions. By populating these models with activity, behaviour, and movement data of animals, we can simulate different habitat conditions and predict how animals will respond to future change. Continue reading

Early Spring: Predicting Budburst with Genetics

Below is a press release about the Methods in Ecology and Evolution article ‘On the importance of accounting for intraspecific genomic relatedness in multi‐species studies‘ taken from the Université de Montréal.

Bud of American beech (Fagus grandifolia). ©Tim Savas

Researchers from Canada and the USA found that tree and shrub genetics can be used to produce more accurate predictions of when leaves will burst bud in the spring. Their study was published in Methods in Ecology and Evolution.

Although climate sceptics might find it hard to believe with this year’s endless snow and freezing temperatures, climate change is making warm, sunny early springs increasingly common. And that affects when trees start to leaf out. But how much?

Simon Joly, biology professor at Université de Montréal and Elizabeth Wolkovich, an ecology professor at University of British Columbia, showed that a plant’s genetics can be used to produce more accurate predictions of when its leaves will burst bud in spring. Continue reading

Scant Amounts of DNA Reveal Conservation Clues

Below is a press release about the Methods in Ecology and Evolution article ‘Empowering conservation practice with efficient and economical genotyping from poor quality samples‘ taken from the Stanford Woods Institute for the Environment.

Wild tiger in India. ©Prasenjeet Yadav

The challenges of collecting DNA samples directly from endangered species makes understanding and protecting them harder. A new approach promises cheap, rapid analysis of genetic clues in degraded and left-behind material, such as hair and commercial food products.

The key to solving a mystery is finding the right clues. Wildlife detectives aiming to protect endangered species have long been hobbled by the near impossibility of collecting DNA samples from rare and elusive animals. Continue reading

Volunteer Ornithological Survey Shows Effects of Temperatures on Eurasian Jay Population

Below is a press release about the Methods in Ecology and Evolution article ‘Incorporating fine‐scale environmental heterogeneity into broad‐extent models‘ taken from the University of Southampton.

A study led by researchers at the University of Southampton has used data collected by volunteer bird watchers to study how the importance of wildlife habitat management depends on changing temperatures for British birds.

The team studied data from the British Trust for Ornithology’s Bird Atlas 2007 – 11 on the abundance of the Eurasian jay over the whole of Great Britain. The University of Southampton researchers focused on jays for this trial as they are a species of bird known to frequent a mixture of different natural environments. Continue reading

Studying Wild Bats with Small On-Board Sound and Movement Recorders

Post provided by LAURA STIDSHOLT

Releasing a female Greater mouse-eared bat with the tag in collaboration with Holger Goerlitz, Stefan Greif and Yossi Yovel. ©Stefan Greif

The way that bats acrobatically navigate and forage in complete darkness has grasped the interest of scientists since the 18th century. These seemingly exotic animals make up one in four mammalian species and play important roles in many ecosystems across the globe from rainforests to deserts. Yet, their elusive ways continue to fascinate and frighten people even today. Over the last 200 years, dedicated scientists have worked to uncover how bats hunt and navigate using only their voice and ears while flying at high speed in complete darkness. Still, the inaccessible lifestyle of these small, nocturnal fliers continues to challenge what we know about their activities in the wild.

Understanding the impact bats have on their ecosystems – for example how many insects a bat catches per night – has still not been directly measured. Most of our knowledge on the natural behaviour and foraging ecology is based on elaborate, but ground-based experiments carried out in the wild. These experiments generally track their behaviour using radio-telemetry, record snapshots of their emitted echolocation calls with microphones, or involve extensive observations. Continue reading