New Technologies Could Help Conservationists Keep Better Track of Serengeti Wildebeest Herds

Below is a press release about the Methods in Ecology and Evolution article ‘A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images‘ taken from the University of Glasgow.

A wildebeest herd in the Serengeti. ©Daniel Rosengren

A wildebeest herd in the Serengeti. ©Daniel Rosengren

Mathematicians and conservationists from the UK, Africa and the United States have used machine-learning and citizen science techniques to accurately count wildebeest in the Serengeti National Park in Tanzania more rapidly than is possible using traditional methods.

Evaluating wildebeest abundance is currently extremely costly and time-intensive, requiring manual counts of animals in thousands of aerial photographs of their habitats. From those counts, which can take months to complete, wildlife researchers use statistical estimates to determine the size of the population. Detecting changes in the population helps wildlife managers make more informed decisions about how best to keep herds healthy and sustainable. Continue reading

Quantifying Animal Movement from Videos

Quantifying animal movement is central to research spanning a variety of topics. It’s an important area of study for behavioural ecologists, evolutionary biologists, ecotoxicologists and many more. There are a lot of ways to track animals, but they’re often difficult, especially for people who don’t have a strong background in programming.

Vivek Hari SridharDominique G. Roche and Simon Gingins have developed a new, simple software to help with this though: Tracktor. This package provides researchers with a free, efficient, markerless video-based tracking solution to analyse animal movement of single individuals and groups.

Vivek and Simon explain the features and strengths of Tracktor in this new video:

Read the full Methods in Ecology and Evolution article ‘Tracktor: Image‐based automated tracking of animal movement and behaviour
(No Subscription Required).

Download and start using Tracktor via GitHub.

Field Work on a Shoestring: Using Consumer Technology as an Early Career Researcher

Post provided by CARLOS A. DE LA ROSA

Esta entrada de blog también está disponible en español

Champagne Tastes on a Beer Budget

Freshly outfitted with a VACAMS camera and GPS unit, #1691 heads off into the forest with her calf. ©Carlos A. de la Rosa

Freshly outfitted with a VACAMS camera and GPS unit, #1691 heads off into the forest with her calf. ©Carlos A. de la Rosa

There’s a frustrating yin and yang to biological research: motivated by curiosity and imagination, we often find ourselves instead defined by limitations. Some of these are fundamental human conditions. The spectrum of light detectable by human eyes, for example, means we can never see a flower the way a bee sees it. Others limitations, like funding and time, are realities of modern-day social and economic systems.

Early career researchers (ECRs) starting new projects and delving into new research systems must be especially creative to overcome the odds. Large grants can be transformative, giving a research group the equipment and resources to complete a study, but they’re tough to get. Inexperienced ECRs are at a disadvantage when competing against battle-hardened investigators with years of grant writing experience. Small grants of up to about $5000 USD, on the other hand, are comparatively easy to find. So, how can ECRs make the most of small, intermittent sources of funding?

I found myself faced with this question in the second year of my PhD field work. Continue reading

Trabajo de Campo a lo Barato: Uso de Tecnología de Productos de Consumo Para un Investigador al Inicio de su Carrera de Investigación

Contribución de CARLOS A. DE LA ROSA

This blog post is available in English

Gusto por champaña con presupuesto de cerveza

Recientemente equipada con una unidad de cámara y GPS VACAMS, la vaca No. 1691 se dirige al bosque con su becerro. ©Carlos A. de la Rosa

Recientemente equipada con una unidad de cámara y GPS VACAMS, la vaca No. 1691 se dirige al bosque con su becerro. ©Carlos A. de la Rosa

Hay un frustrante toma-y-dame en el campo de la investigación biológica: motivados por la curiosidad y la imaginación, a menudo nos encontramos definidos por limitaciones. Algunas de estas, como nuestros sentidos, son condiciones humanas fundamentales. El espectro de luz detectable por los ojos humanos, por ejemplo, significa que nunca podremos ver a una flor de la misma forma en que la ve una abeja. Otras limitaciones, como financiamiento y tiempo, representan las realidades de los sistemas sociales y económicos de hoy día.

Los investigadores al comienzo de sus carreras (Early Career Researchers, o ECRs en sus siglas en inglés) que se embarcan en nuevos proyectos y se involucran con sistemas nuevos de investigación deben ser especialmente creativos para poder superar las probabilidades. Una generosa beca puede ser transformativa, pero un ECR con poca experiencia está en desventaja cuando compite con investigadores ya endurecidos por la batalla, quienes tienen años de experiencia escribiendo propuestas de financiamiento. Por otra parte, las pequeñas becas en el rango de $2.000 a $5.000 son comparativamente fáciles de encontrar. ¿Cómo puede un ECR aprovechar al máximo estas pequeñas e intermitentes fuentes de financiamiento?

En el segundo año del trabajo de campo de mi doctorado me enfrenté con este enigma. Continue reading

‘Eavesdropping’ Technology used to Protect one of New Zealand’s Rarest Birds

Below is a press release about the Methods in Ecology and Evolution article ‘A novel method for using ecoacoustics to monitor post‐translocation behaviour in an endangered passerine‘ taken from the Zoological Society of London.

Juvenile hihi. ©ZSL

Juvenile hihi. ©ZSL

Scientists from international conservation charity ZSL (Zoological Society of London), Imperial College London and conservationists from the Rotokare Scenic Reserve Trust used acoustic monitoring devices to listen in on the ‘conversations’ of New Zealand’s endemic hihi bird, allowing them to assess the success of the reintroduction without impacting the group.

For the first time ZSL scientists were able to use the calls of a species as a proxy for their movement. A happy hihi call sounds like two marbles clanging together in what is known as the ‘stitch’ call. Scientists saw the calls change from an initial random distribution to a more settled home range – marking the hihi reintroduction and the new method a success. Continue reading

Advances in Modelling Demographic Processes: A New Cross-Journal Special Feature

Analysis of datasets collected on marked individuals has spurred the development of statistical methodology to account for imperfect detection. This has relevance beyond the dynamics of marked populations. A couple of great examples of this are determining site occupancy or disease infection state.

EURING Meetings

The regular series of EURING-sponsored meetings (which began in 1986) have been key to this development. They’ve brought together biological practitioners, applied modellers and theoretical statisticians to encourage an exchange of ideas, data and methods.

This new cross-journal Special Feature between Methods in Ecology and Evolution and Ecology and Evolution, edited by Rob Robinson and Beth Gardner, brings together a collection of papers from the most recent EURING meeting. That meeting was held in Barcelona, Spain, 2017, and was hosted by the Museu de Ciènces Naturals de Barcelona. Although birds have provided a convenient focus, the methods are applicable to a wide range of taxa, from plants to large mammals. Continue reading

Map of Chemicals in Jellyfish Could be the Future to Protecting UK Waters and Marine Life

Below is a press release about the Methods in Ecology and Evolution article ‘Spatial models of carbon, nitrogen and sulphur stable isotope distributions (isoscapes) across a shelf sea: An INLA approach‘ taken from the University of Southampton.

Jellyfish opportunistically caught in UK waters are used to map chemical variations across marine space. ©University of Southampton

Jellyfish opportunistically caught in UK waters are used to map chemical variations across marine space. ©University of Southampton

Scientists at the University of Southampton have developed maps of chemicals found in jellyfish which could offer a new tool for conservation in British waters and fisheries. The maps will also be able to detect fraudulently labelled food in retail outlets by helping to trace the origins of seafood.

The Southampton based research team including Dr Clive Trueman, Dr Katie St. John Glew and Dr Laura Graham, built maps of the chemical variations in jellyfish caught in an area of approximately 1 million km2 of the UK shelf seas. These chemical signals vary according to where the fish has been feeding due to differences in the marine environment’s chemistry, biology and physical processes. Continue reading

Limitations and Benefits of the Unmatched Count Technique: Considering How We Use New Methods in Conservation

Post provided by Amy Hinsley and Ana Nuno

Esta publicação no blogue também está disponível em português

A New Conservation Toolbox

It is widely accepted that many conservation challenges are directly related to human behaviour. Whether it is the over-collection of a rare orchid by harvesters in Southeast Asia, or the decisions by collectors in Europe to buy and smuggle these orchids home, understanding the extent and nature of these behaviours is essential to addressing the threats they might cause. This has led conservation researchers and practitioners to start looking outside of their discipline, to find methods and approaches from across the social sciences to improve our understanding of these complex issues.

A research assistant carrying out a UCT survey about the use of Traditional Medicine products containing bear bile in China. © Chen Haochun.

A research assistant carrying out a UCT survey about the use of Traditional Medicine products containing bear bile in China. © Chen Haochun.

While this interdisciplinarity is a positive move for conservation, it is important that we treat these ‘new’ methods carefully and understand their limitations. If we don’t, there is a risk that our new toolbox full of exciting methods that sound great on a funding application, may in fact not be making what we do any better, or in extreme cases they may even be making it worse.

With this in mind, a group of conservation social scientists, led by researchers at the Universities of Oxford and Exeter, decided to look in depth into one of these ‘new’ methods, to provide recommendations on when and how it should be used, and when it shouldn’t. Our Open Access article – ‘Asking sensitive questions using the unmatched count technique: Applications and guidelines for conservation‘ – looks at the Unmatched Count Technique (UCT – also called the list experiment), which is increasingly being used in conservation to ask questions about ‘sensitive’ topics. Continue reading