Also of Interest… Journal of Applied Ecology

Post provided by Aaron M. Ellison

The Struggle is Real: Finding Interesting and Relevant Articles

Where to start? We are awash in data, information, papers, and books. There are hundreds of ecological and environmental journals published regularly around the world; the British Ecological Society alone publishes five journals and is now accepting submissions for a sixth (more information on People and Nature here).

None of us has time even to click on the various articles flagged by alerts, feeds, or keywords, and few even browse tables of contents (which are becoming irrelevant as we move to DOIs and immediate-online publication). Increasingly, we rely on our friends, colleagues, students, and mentors to point us towards papers we might find interesting – further evidence, I suppose, of the importance of good networks for knowledge creation and scientific understanding.

Regular readers of Methods in Ecology and Evolution or this Methods blog may not realise how many methodological papers are published routinely in our BES sister journals. In this inaugural posting of Also of interest…, I highlight three papers recently published in Journal of Applied Ecology that introduce and apply new, model-based methodology to interesting ecological questions. The specific methods are like many seen in the pages of Methods in Ecology and Evolution and suggest general approaches for modelling and studying complex ecological and environmental phenomena. Continue reading

TV Coverage of Cycling Races Can Help Document the Effects of Climate Change

Archive footage of the Tour of Flanders obtained by Flemish broadcaster VRT - Flanders Classics

Archive footage of the Tour of Flanders obtained by Flemish broadcaster VRT – Flanders Classics

Analysing nearly four decades of archive footage from the Tour of Flanders, researchers from Ghent University have been able to detect climate change impacts on trees. Their findings were published today in the journal Methods in Ecology and Evolution.

Focusing on trees and shrubs growing around recognisable climbs and other ‘landmarks’ along the route of this major annual road cycling race in Belgium, the team looked at video footage from 1981 to 2016 obtained by Flemish broadcaster VRT. They visually estimated how many leaves and flowers were present on the day of the course (usually in early April) and linked their scores to climate data. Continue reading

Editor Recommendation: Accounting for Genetic Differences among Unknown Parents in Microevolutionary Studies

Post provided by Laura Graham

Song sparrows show substantial genetic variation in multiple life-history traits. Application of ‘genetic group animal models’ show that this is partly due to genetic effects of immigrants © Jane Reid

Song sparrows show genetic variation in multiple life-history traits. Application of ‘genetic group animal models’ show this is partly due to genetic effects of immigrants ©Jane Reid

Understanding how wild populations respond and adapt to environmental change is a key question in evolutionary biology. To understand this, we need to be able to separate genetic and environmental effects on phenotypic variation. Statistical ‘animal models’, which can do just this, have revolutionised the field of quantitative genetics. A lack of full knowledge of individual pedigrees can lead to severe bias in quantitative genetic parameter estimates though – particularly when genetic values for focal traits vary non-randomly in unknown parents.

In the Journal of Animal Ecology ‘How To…’ paper “Accounting for genetic differences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models”, the extent of this bias is highlighted. Matthew Wolak and Quantitative Ecology 2018 keynote speaker Jane Reid show how genetic group methods – a technique developed in agricultural science – can be employed to minimise it. Continue reading

Editor Recommendation: Lianas and Soil Nutrients Predict Fine-Scale Distribution of Above-Ground Biomass in a Tropical Moist Forest

Post provided by Laura Graham

©Groume

©Groume

Datasets used by quantitative ecologists are getting more and more complex. So we need more complex models, such as hierarchical and complex spatial models. Typically, Bayesian approaches such as Markov chain Monte Carlo have been used. But these methods can be slow, making it infeasible to fit some models.

New developments in Integrated nested Laplace approximation (INLA) have made some of these complex models much faster to fit. Dedicated R packages (R-INLA and inlabru) make coding these Bayesian models much more straightforward. Also, INLA lets you fit of a class of models which allow for computationally efficient and flexible modelling of spatial data. Continue reading

Statistical Ecology Virtual Issue

To celebrate the International Statistical Ecology Conference and British Ecological Society Quantitative Ecology Annual Meeting, Laura Graham and Susan Jarvis have compiled a virtual issue celebrating all things statistical and quantitative in ecology.

Statistical and quantitative methods within ecology have increased substantially in recent years. This rise can be attributed both to the growing need to address global environmental change issues, as well as the increase in data sources to address these challenges. Continue reading

Overcoming the Challenges of Studying Soil Nematodes: A New Approach with Implications for All (Soil) Organisms

Post provided by Stefan Geisen

(Soil) Nematodes

“…if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes…” (Cobb 1914)

He may have said it more than a century ago but we now, more than ever, realise that Nathan Augustus Cobb was right. Nematodes are by far the most abundant animals soil, freshwater and marine ecosystems. These tiny worms are barely visible to the human eye (if they’re visible at all), hundreds can inhabit a single gram of soil . Their similar shape might lead you to think that they’re all alike, but that’s not the case. More than 25,000 species have been identified and estimates put their entire species diversity in the 100,000s.

Some common nematode species found in most soils. a) Plectus sp; b) Aphelenchus sp; c) Helicotylenchus sp; d) Thonus sp; e) Mononchus sp; © Wageningen University, Laboratory of Nematology, NL; Hanny van Megen

Some common nematode species found in most soils. a) Plectus sp, b) Aphelenchus sp, c) Helicotylenchus sp, d) Thonus sp, e) Mononchus sp. © Wageningen University, Laboratory of Nematology, NL; Hanny van Megen

This taxonomic and functional diversity has boosted nematodes to become useful bioindicators for soil quality. Nematodes perform many different functions in both terrestrial and aquatic ecosystems. These are mainly defined by what they eat:

  • Bacteria/Fungi: Many nematode groups eat bacteria and fungi. They control the population of these organisms and keep them active.
  • Plants: Plant feeders are the unwanted guests in agricultural systems as well as in our gardens. They can destroy entire harvests by piercing into or infiltrating roots.
  • Omnivores/Predators: Many nematode species prey on other smaller organisms including smaller nematodes and control their abundances.
  • Parasites: These species inhabit other larger organisms and can act as biocontrol agents.

Continue reading

An Interview with Alan Gelfand

David Warton interviews Alan Gelfand, a keynote speaker at the Statistics in Ecology and Environmental Monitoring (SEEM) conference in Queenstown, NZ. Alan is best known for proposing Bayesian estimation of a posterior distribution using Gibbs sampling, in his classic papers ‘Sampling-Based Approaches to Calculating Marginal Densities‘ and ‘Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling‘.

David and Alan discuss the origins of the idea that revolutionised Bayesian statistics, Alan’s current research, and his passion for ecology.

Check out David’s other interviews on the Methods in Ecology and Evolution YouTube channel.

The babette R Package: How to Sooth the Phylogenetic BEAST2

Post provided by Richel Bilderbeek

 What is babette?

‘babette‘ is an R package that works with the popular phylogenetic tool BEAST2. BEAST2 uses one or more alignments and a model setup to create a Bayesian posterior of jointly estimated model parameters and phylogenies.

babette lets you call BEAST2 from an R script. This makes it easier to explore models and/or alignments than using the graphical user interface programs that BEAST2 provides. It will also help you to improve the reproducibility of your work with BEAST2.

babette Tutorial Videos

If you’re new to phylogentic analyses, the video ‘babette demo‘ demonstrates the package. It has all of the information that you need to be able to start using the package

Continue reading

The Future of Solar Geolocation Tracking is NOW

Post provided by Julia Karagicheva, Theunis Piersma and Eldar Rakhimberdiev

Black-tailed godwit with leg-mounted solar geolocator. ©Jan van de Kam

Black-tailed godwit with leg-mounted solar geolocator. ©Jan van de Kam

Working on FLightR, the package for analysis of data obtained from solar geolocation tracking devices, we were haunted by the unpleasant feeling of investing in technology which will soon be out of date. Until now solar geolocators have been popular in ornithological studies. This is because they’re small, light-weight (< 1/3 g) tracking devices that can be deployed even on miniature birds, such as swallows and warblers. They’ve also been the longest-lasting data loggers, with the most storage space and, of course, the most affordable ones.

Are Solar Geolocators Finished?

There are apparent drawbacks of using this technique though. To begin with, solar geolocation simply does not work for some species. You can’t use it to study birds living in dense tropical forests or in cavities, because of the light-pattern bias. For the same reason, it doesn’t provide fantastic results in light-polluted areas. Data from geolocators cannot be retrieved remotely, and this is why you need to have high recapture rates for the species you’re studying.   Continue reading

Fourier Methods Gain Wide Appeal for Tropical Phenology Analysis

Post provided by Emma Bush

Lopé National Park. ©Jeremy Cusack

Lopé National Park. ©Jeremy Cusack

Like all living things, plant species must reproduce to persist. Key stages in successful plant reproduction must be carefully timed to make sure resources are available and conditions are optimal. There will be little success if flowers mature in bad weather conditions for their insect pollinators or if fruits ripen but the seed dispersers have migrated elsewhere.

Because plants rely on the abiotic environment for sunlight, nutrients and water, and in some cases for the dispersal of pollen and seeds, it is not surprising that their life stages are closely linked to environmental cycles. Continue reading