Improving Biodiversity Monitoring using Satellite Remote Sensing

Increased access to satellite imagery and new developments in remote sensing data analyses can support biodiversity conservation targets by stepping up monitoring processes at various spatial and temporal scales. More satellite imagery is becoming available as open data. Remote sensing based techniques to capitalise on the information contained in spatially-explicit species data, such as Global Biodiversity Information Facility (GBIF), are developing constantly. Current free and open data policy will have a dramatic impact on our ability to understand how biodiversity is being affected by anthropogenic pressures, while improving our ability to predict the consequences of changes at different scales.

In our latest Special Feature, ‘Improving Biodiversity Monitoring using Satellite Remote Sensing‘, Sandra Luque, Nathalie Pettorelli, Petteri Vihervaara and Martin Wegmann explain why tackling this challenge is worth doing. The articles demonstrate how combining satellite remote sensing data with ground observations and adequate modelling can help to give us a better understanding of natural systems, leading to improved management practices. They focus on three key conservation challenges:

  1. Monitoring of biodiversity
  2. Developing an improved understanding of biodiversity patterns
  3. Assessing biodiversity’s vulnerability to climate change

Continue reading

Lasers in the Jungle Somewhere: How Airborne LiDAR Reveals the Structure of Forests

Post provided by Phil Wilkes (PDRA, Department of Geography, University College London)

Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO

Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO

How many samples do you hope to collect on your next field assignment? 50, 100 or 1000? How about billions. It may seem overly optimistic, but that’s the reality when using Light Detection and Ranging, or LiDAR.

LiDAR works on the principle of firing hundreds of thousands of laser pulses a second that measure the distance to an intercepting surface. This harmless barrage of light creates a highly accurate 3D image of the target – whether it’s an elephant, a Cambodian temple or pedestrians walking down the street. LiDAR has made the news over recent years for its ability to unearth ancient temples through thick jungle, but for those of us with an ecological motive it is the otherwise impenetrable cloak of vegetation which is of more interest.

Airborne LiDAR in Forests

As it’s National Tree Week in the UK, the focus of this blog post will be on the application of LiDAR in forests. There are a number of techniques that use LiDAR in forests, across a range of scales, from handheld, backpack and tripod mounted terrestrial laser scanners to spaceborne instruments on the International Space Station. Continue reading