Exploring Population Responses to Environmental Change When There’s Never Enough Data

Post provided by Bethan Hindle

Understanding Population Responses to Environmental Change

Rapid climatic change has increased interest about how populations respond to environmental change. This has broad applications, for example in the management of endangered and economically important species, the control of harmful species, and the spread of disease. At the population level changes in abundance are driven by changes in vital rates, such as survival and fecundity. So studies that track individual survival and reproduction over time can provide useful insights into the drivers of such changes. They allow us to make future population level predictions on things like abundance, extinction risk and evolutionary strategies.

Archbold Biological Station - site of numerous long-term demographic studies, including that of Eryngium cuneifolium used in this paper. ©Reed Bowman

Archbold Biological Station – site of numerous long-term demographic studies, including that of Eryngium cuneifolium used in this paper. ©Reed Bowman

Predicting the future isn’t a simple task though. Anyone whose washing has got soaked through after the weather forecast suggested the day would be dry and sunny will know that (though the accuracy of short term weather forecasts has increased dramatically in recent years). Ideally, if we want to predict what will happen to populations as their environment changes, we would identify the drivers of variation in their survival and reproduction. We do this by asking questions like ‘are years of low survival associated with high rainfall?’ But, this is not a simple task; identifying drivers and the time periods over which they act and accurately estimating their effects requires long-term demographic data.   Continue reading

Inverse Modelling and IPMs: Estimating Processes from Incomplete Information

Post provided by Edgar J. González

In demography, a set of processes (survival, growth, fecundity, etc.) interacts to produce observable patterns (population size, structure, growth rate, etc.) that change over time. With traditional approaches you follow the individuals of a population over some timespan and track all of these processes.

Demographic patterns and processes (Click to expand)

Demographic patterns and processes (Click to expand)

However, depending on the organism, some processes may be very hard to quantify (e.g. mortality or recruitment in animals or plants with long lifespans). You may have observed the patterns for the organism that you’re studying and, even better, measured some, but not all, of the processes. The question is: can we use this limited information to estimate the processes we couldn’t measure? Continue reading