BACIPS (Before-After Control-Impact Paired Series) is probably the best-known and most powerful approach to detect and quantify human interventions on ecosystems. In BACIPS designs, Impact and Control sites are sampled simultaneously (or nearly so) multiple times Before and After an intervention. For each sampling survey conducted Before or After, the difference in the sampled response variable (e.g. density) is calculated. Before and After differences are then compared to provide a measure of the effect of the intervention, assuming that the magnitude of the induced change is constant through time. However, many interventions may not cause immediate, constant changes to a system.
We developed a new statistical approach – called Progressive-Change BACIPS (Before-After Control-Impact Paired-Series) – that extends and generalises the scope of BACIPS analyses to time-dependent effects. After quantifying the statistical power and accuracy of the method with simulated data sets, we used marine and terrestrial case studies to illustrate and validate their approach. We found that the Progressive-Change BACIPS works pretty well to estimate the effects of environmental impacts and the time-scales over which they operate.
The following images show the diversity of contexts in which this approach can be undertaken.
Moorea is an island located in French Polynesia. It’s known for its extraordinary marine biodiversity, but also for the great, natural spatial and temporal variability due to recurrent external forces. This place, and the statistical challenges it represents, has provided us with a wealth of inspiration in formulating our Progressive-Change BACIPS approach to environmental impact assessment.
Unlike classic experimental studies like this one, environmental impacts are not (and often should not) be replicated.
Recurrent disturbances such as Crown-of-Thorns Starfish (Acanthaster planci) outbreaks are important drivers of declines and recoveries in coral reef ecosystems. How can we reliably estimate the effect of local human interventions (for example marine protected areas, MPAs) amid such noise?
© Lauric Thiault
Here, a scientist is counting fish where a MPA will be implemented using a Diver-Operated Video system. Repeated assessments before enforcement provide an estimate of the spatial variability between the Control and Impact sites in the absence of an effect of the MPA.
A change in the difference in density between the Control and Impact sites after the establishment of the MPA provides an estimate of the local effect of the MPA. This is the BACIPS design.
Progressive-Change BACIPS uses these data to inform the form of the final model. Many models can be tested such as step-change, linear, asymptotic or logistic models – whatever that seems appropriate. This coral reef application was just one of the many possibilities to measure environmental impacts that our tool can reveal when applied to BACIPS data.
We have also applied it to other study contexts – such as the effect of highway construction on the abundance of birds. Here is an Andean condor (Vultur gryphus) flying away after the passage of a car.
This method is also well suited to forest ecosystems, for example to study the effect of increasing tourist visitation on this ancient Araucaria (Araucaria araucana) forest in Chile.
As long as data collected before and after, inside and outside the impacted area, exist Progressive-Change BACIPS is an excellent statistical approach to estimate the effects of environmental impacts.
To find out more about Progressive Change BACIPS, read our Methods in Ecology and Evolution article ‘Progressive-Change BACIPS: a flexible approach for environmental impact assessment’.
Like this:
Like Loading...
Related