The Robert May Prize is awarded annually for the best paper published in Methods in Ecology and Evolution by an Early Career Researcher. We’re delighted to announce that the 2019 winner is Corneile Minnaar, for his article ‘Using quantum dots as pollen labels to track the fates of individual pollen grains‘.

A central component of an organism’s fitness is its ability to successfully reproduce. This includes finding a potential mate and successful mating. For plants, movement of pollen from an anther to a conspecific stigma is essential for successful reproduction, but directly tracking movement of individual pollen grains heretofore has been impossible (with the exception of those species of orchids and milkweeds whose pollen comes in large packages (pollinia)). Knowing how pollen move around, whether or not they successfully fertilize ovules, is also central to understanding the evolution and ecology of flowering plants (angiosperms) and floral traits.

As part of his dissertation work at Stellenbosch University in South Africa, Corneile Minnar used quantum dots to track pollen grains of four plant species from four different, unrelated angiosperm families. Quantum dots are extraordinarily tiny semiconductor nanocrystals that behave like atoms and emit bright visible and infrared light when exposed with an ultraviolet light source. By placing very small volumes of quantum dots suspended in hexane directly onto dehiscent anthers and following the movement of the well-attached dots to the pollen grains, Minnaar was able to track the pollen from one plant to another.

The cost-effective (≈ US$ 0.02/flower) methodology that he has developed will provide new opportunities to explore central open questions in plant biology, including: the magnitude and frequency of pollen loss during various stages of the pollen movement; the importance of pollen-movement in speciation and diversification in angiosperms; the structure of pollination landscapes and competitive interactions among conspecific and heterospecific gametophytes; and the importance of specific pollinators in facilitating reproduction and persistence of plants of economic and conservation concern.

Corneile obtained his undergraduate and post-graduate degrees (BSc honours and MSc) in Zoology at the University of Pretoria, South Africa. Working in the high-tech physiology and genetics labs of his advisers, Andrew McKechnie and Catherine Sole, inspired a love for the interface between nature and technology, while his main adviser, Justin Boyles, instilled in him a multi-hypothesis and computational approach to science that remains prevalent in his work. For his PhD, Corneile moved to Stellenbosch University (South Africa) at the heart of the incredibly diverse Cape Floristic Region, where his adviser, Prof Bruce Anderson, introduced him to a beguiling array of pollination systems and intriguing questions.

However, the queries that most piqued his interests could only be solved by tracking the movement of pollen grains, so he decided to develop a method to track pollen grains for his PhD. With patient support and advice from Bruce and funding from the Eva Crane foundation and NRF South Africa, the method has now been published. Corneile has since been awarded an NRF Innovation Post-Doctoral Fellowship as well as a Technology and Innovation Seed Fund grant for a patent he developed in his PhD. Corneile continues to tinker at the interface of nature and technology, working closely with industry partners such as Koppert Biological Systems and his colleague Dr Willem Augustyn to develop more sustainable and effective pollination methods.

Corneile’s winning paper and all of the articles shortlisted for this year’s award are available to read in this Virtual Issue.

Find out more about the articles that were shortlisted for this year’s Robert May Prize.

And find out about all of the British Ecological Society journal prizes for best article by an Early Career Researcher.