New Research Shows Pretend Porpoise Sounds are Helping Conservation Efforts

Below is a press release about the Methods in Ecology and Evolution article ‘Estimating effective detection area of static passive acoustic data loggers from playback experiments with cetacean vocalisations‘ taken from Swansea University.

Harbour porpoise under the surface - I. Birks, SeaWatchFoundation

Harbour porpoise under the surface – I. Birks, SeaWatchFoundation

An examination into the detection of harbour porpoises is helping to give new understanding of effective monitoring of species under threat from anthropogenic activities such as fisheries bycatch and coastal pollution.

In a first study of its kind, Dr Hanna Nuuttila, currently at Swansea University’s College of Science – together with scientists from the German Oceanographic Museum, the University of St Andrews and Bangor University – revealed how playing back porpoise sounds to an acoustic logger can be used to assess the detection area of the device, a metric typically required for effective monitoring and conservation of protected species.

Continue reading

The Overlooked Commotion of Particle Motion in the Ocean

Below is a press release about the Open Access Methods paper ‘Particle motion: the missing link in underwater acoustic ecology‘ taken from the University of Bristol, the University of Exeter and the Centre for Environment, Fisheries  & Aquaculture Science (CEFAS).

Fish and invertebrates predominantly or exclusively detect particle motion.

Fish and invertebrates predominantly or exclusively detect particle motion.

A growing number of studies on the behaviour of aquatic animals are revealing the importance of underwater sound, yet these studies typically overlook the component of sound sensed by most species: particle motion. In response, researchers from the Universities of Bristol, Exeter and Leiden and CEFAS have developed a user-friendly introduction to particle motion, explaining how and when it ought to be measured, and provide open-access analytical tools to maximise its uptake. Continue reading