BES Macroecology 2018: Macroecology and Data

Post provided by Faith Jones

© Matthew Leonard

© Matthew Leonard

The annual BES Macroecology Special Interest Group conference took place on the 10th and 11th of July. This year the meeting was in St Andrews, Scotland. Over 100 delegates came together in this old University town to discuss the latest research and concepts in macroecology and macroevolution.

Remote Sensing, Funky Koalas and a Science Ceilidh

The conference opened with a plenary by Journal of Applied Ecology Senior Editor Nathalie Pettorelli from ZSL. She talked about how remote sensing can be used in ecological and conservation studies. In the other plenary talks, we heard from:

  • Methods in Ecology and Evolution Senior Editor Bob O’Hara from NTNU on, among other things, how useful occupancy models are when “occupancy” is such a broad term
  • Anne Magurran from the University of St Andrews discussing turnover and biodiversity change
  • Brian McGill from the University of Maine talking about the data-driven approach to the “biodiversity orthodoxy” and challenging the conventional wisdom about macroecological change

We also hosted a student plenary speaker, Alex Skeels, who gave a lively talk about diversification and geographical modelling using some pretty funky disco koalas. In addition to these talks, there were 60 short 5 minutes talks and 20 posters. Continue reading

Issue 3.2

Aerial photograph of a forest

Cover image for issue 3.2
© Getzin & Wiegand – Biodiversity Exploratories

About the issue

With topics ranging from phylogenetic analysis to statistics and distribution modelling, conservation, citizen science, surveys, genetic and demographic models to avian biology, our issue 3.2 should be of interest to most ecologists and evolutionary biologists. The issue also contains 5 free applications.

About the cover

This very high-resolution image of a beech-dominated forest in central Germany was taken by an unmanned aerial vehicle (UAV) at 250 meter above ground. In this photograph one can clearly recognize individual tree crowns and even smallest gaps. UAVs are increasingly used for ecological surveys because they provide extremely fine resolutions and thus allow the identification of previously undetected object details. Furthermore, UAVs can be considered as very cost-effective tools for the acquisition of data that can be used also very flexibly.

In Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles Getzin, Wiegand and Schöning tested the hypothesis that gap-structural information on aerial images can be principally used for the ecological assessment of understorey plant diversity in forests. The authors demonstrate that spatially implicit information on gap shape metrics is indeed sufficient to reveal strong dependency between gap patterns as a filter for incoming light and plant biodiversity. The study highlights that understorey biodiversity can be actively controlled by the spatial quality, and not just quantity, of tree removal. Thus, even under the same quota of tree harvesting, the promotion of complex and irregularly shaped gaps may be beneficial to foster biodiversity in forests.

Related