Biodiversity Monitoring by Plant Proxy is Cheap and Easy: Here’s How and Why

Post provided by Rasmus Ejrnæs, Ane Kirstine Brunbjerg & Hans Henrik Bruun

Could we use the plants in this swamp forest to predict the diversity of other species?

Local communities and regional biotas are built of hundreds, if not thousands, of species. Most of these species are small-bodied and discreet lifeforms. So it’s no wonder that naturalists have almost always focused their attention on conspicuous species of their particular liking. Why plants then? Well, plants are practical and efficient. They “stand still and wait to be counted”, as the eminent population biologist John Harper put it. No matter the weather, from spring to autumn. There are enough plant species to show contrasts between sites, and yet they can usually be identified to species level in the field.

You Can’t Predict the Diversity of Beetles from Lichens… Can You?

Unfortunately, the overwhelming scientific consensus seems to be that any particular taxonomic group won’t adequately represent the biodiversity of other taxonomic groups. The idea of surrogacy seems to hit the same hard wall as most attempts to provide generally working models for variation in biodiversity at local and regional scales. Biodiversity remains one of the largest scientific research questions without good general answers. Continue reading

Crossing the Palaeontological-Ecological Gap

Today is the first day of the Crossing the Palaeontological-Ecological Gap (CPEG) conference. The aim of the conference is to open a dialogue between palaeontologists and ecologists who work on similar questions but across vastly different timescales. This splitting of temporal scales tends to make communication, data integration and synthesis in ecology harder. A lot of this comes from the fact that palaeontologists and ecologists tend to publish in different journals and attend different meetings.

Methods in Ecology and Evolution is one of few ecological journals that attracts submissions from both ecologists and palaeontologists. To highlight this, we’ve released a Virtual Issue, also called Crossing the Palaeontological-Ecological Gap. Continue reading

Bats, Acoustic Methods and Conservation 4.0: An Interview with Kate Jones

At this year’s International Statistical Ecology Conference (ISEC 2018) David Warton interviewed Kate Jones, Chair in Ecology and Biodiversity at University College, London. Their conversation mainly focused on how to classify bats from acoustic data, with particular reference to ‘Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design‘ by Veronica Zamora‐Gutierrez et al. They also discuss Conservation 4.0!

We’ll have more of David’s interviews from the ISEC coming out over the next few weeks. Keep an eye out for them here and on the Methods in Ecology and Evolution YouTube channel.

The Manager’s Dilemma: Which Species to Monitor?

Post provided by Payal Bal and Jonathan Rhodes

The greater bilby (M.Lagotis). ©Save the Bilby Fund

The greater bilby (M.Lagotis). ©Save the Bilby Fund

Imagine you’re the manager of a national park. One that’s rich in endemic biodiversity found nowhere else on the planet. It’s under the influence of multiple human pressures causing irreversible declines in the biodiversity, possibly even leading to the extinction of some of the species. You’re working with a complex system of multiple species and threats, limited knowledge of which threats are causing the biggest declines and limited resources. How do you decide what course of action to take to conserve the biodiversity of the park? This is the dilemma faced by biodiversity managers across the globe.

In our recent paper, ‘Quantifying the value of monitoring species in multi‐species, multi‐threat systems’, we address this problem and propose a method using value of information (VOI) analysis. VOI estimates the benefit of monitoring for management decision-making. Specifically, it’s a valuation tool that can be used to disentangle the trade-offs in competing monitoring actions. It helps managers decide how to invest (or whether to invest) their money in monitoring actions when faced with imminent biodiversity declines and the urgency of efficient conservation action. Continue reading

BES Macroecology 2018: Macroecology and Data

Post provided by Faith Jones

© Matthew Leonard

© Matthew Leonard

The annual BES Macroecology Special Interest Group conference took place on the 10th and 11th of July. This year the meeting was in St Andrews, Scotland. Over 100 delegates came together in this old University town to discuss the latest research and concepts in macroecology and macroevolution.

Remote Sensing, Funky Koalas and a Science Ceilidh

The conference opened with a plenary by Journal of Applied Ecology Senior Editor Nathalie Pettorelli from ZSL. She talked about how remote sensing can be used in ecological and conservation studies. In the other plenary talks, we heard from:

  • Methods in Ecology and Evolution Senior Editor Bob O’Hara from NTNU on, among other things, how useful occupancy models are when “occupancy” is such a broad term
  • Anne Magurran from the University of St Andrews discussing turnover and biodiversity change
  • Brian McGill from the University of Maine talking about the data-driven approach to the “biodiversity orthodoxy” and challenging the conventional wisdom about macroecological change

We also hosted a student plenary speaker, Alex Skeels, who gave a lively talk about diversification and geographical modelling using some pretty funky disco koalas. In addition to these talks, there were 60 short 5 minutes talks and 20 posters. Continue reading

Improving Biodiversity Monitoring using Satellite Remote Sensing

Increased access to satellite imagery and new developments in remote sensing data analyses can support biodiversity conservation targets by stepping up monitoring processes at various spatial and temporal scales. More satellite imagery is becoming available as open data. Remote sensing based techniques to capitalise on the information contained in spatially-explicit species data, such as Global Biodiversity Information Facility (GBIF), are developing constantly. Current free and open data policy will have a dramatic impact on our ability to understand how biodiversity is being affected by anthropogenic pressures, while improving our ability to predict the consequences of changes at different scales.

In our latest Special Feature, ‘Improving Biodiversity Monitoring using Satellite Remote Sensing‘, Sandra Luque, Nathalie Pettorelli, Petteri Vihervaara and Martin Wegmann explain why tackling this challenge is worth doing. The articles demonstrate how combining satellite remote sensing data with ground observations and adequate modelling can help to give us a better understanding of natural systems, leading to improved management practices. They focus on three key conservation challenges:

  1. Monitoring of biodiversity
  2. Developing an improved understanding of biodiversity patterns
  3. Assessing biodiversity’s vulnerability to climate change

Continue reading

Also of Interest… Journal of Applied Ecology

Post provided by Aaron M. Ellison

The Struggle is Real: Finding Interesting and Relevant Articles

Where to start? We are awash in data, information, papers, and books. There are hundreds of ecological and environmental journals published regularly around the world; the British Ecological Society alone publishes five journals and is now accepting submissions for a sixth (more information on People and Nature here).

None of us has time even to click on the various articles flagged by alerts, feeds, or keywords, and few even browse tables of contents (which are becoming irrelevant as we move to DOIs and immediate-online publication). Increasingly, we rely on our friends, colleagues, students, and mentors to point us towards papers we might find interesting – further evidence, I suppose, of the importance of good networks for knowledge creation and scientific understanding.

Regular readers of Methods in Ecology and Evolution or this Methods blog may not realise how many methodological papers are published routinely in our BES sister journals. In this inaugural posting of Also of interest…, I highlight three papers recently published in Journal of Applied Ecology that introduce and apply new, model-based methodology to interesting ecological questions. The specific methods are like many seen in the pages of Methods in Ecology and Evolution and suggest general approaches for modelling and studying complex ecological and environmental phenomena. Continue reading

Using the Smith-Root ANDe System for Wildlife Conservation

POST PROVIDED BY TRACIE SEIMON, PHD

The ANDe system can help researchers tell whether endangered species are present.

The ANDe system can help researchers tell whether endangered species are present.

In recent years, there have been a lot of studies on the use of environmental DNA (eDNA) for species detection and monitoring. This method takes advantage of the fact that organisms shed DNA into the environment in the form of urine, feces, or cells from tissue such as skin. As this DNA stays in the environment, we can use molecular techniques to search for traces of it. By doing this, we can determine if a species lives in a particular place.

At the Wildlife Conservation Society (WCS), we’re integrating and using the ANDe system in combination with ultra-portable qPCR (quantitative polymerase chain reaction) and DNA extraction technologies developed by Biomeme Inc. for eDNA capture and species detection of endangered turtles, and other aquatic organisms. This helps us to better monitor species within our global conservation programs. Continue reading

Editor Recommendation: The Ecologist’s Field Guide to Sequence-Based Identification of Biodiversity

Post provided by Pierre M Durand

A fossilized species of the diatom Thalassiosira. B. A species of the dinoflagellate Prorocentrum. Image provided by A. Ndhlovu).

A fossilized species of the diatom Thalassiosira. B. A species of the dinoflagellate Prorocentrum. (Image provided by A. Ndhlovu).

As any reader of Methods in Ecology and Evolution will know, advances in technologies and methodologies used by ecologists and evolutionary biologists are never-ending. Coupled with the tendency for researchers to become ever more specialised, this means that keeping up to date with all the advances is challenging at best. Occasionally, new advances revolutionise the kinds of questions we ask and encourage us to develop new approaches to answer them. One of these huge advances emerged from the ‘-omics’ revolution.

The application of -omics methodologies to evolution and ecology has been particularly rapid. These technologies usually aren’t part of the basic science education in these fields – it’s more usual for computational biologists to cross over to ecology and evolution than the other way around. The review by Simon Creer and colleagues ’The ecologist’s field guide to sequence-based identification of biodiversity’ helps bridge this gap. It’s not too technical, but sufficiently detailed, and it provides a very handy overview of how genomics, transcriptomics and their meta-analyses can be applied to evolutionary ecology. The paper is filled with enormously helpful workflows, pointers, examples and, as the title suggests, is a guide for those who are not experts in sequence based technologies. Continue reading

The Global Pollen Project: An Update for Methods Readers

Post Provided by Andrew C. Martin

The Global Pollen Project is an online, freely available tool and data source developed to help people identify and disseminate palynological resources. Palynology – the study of pollen grains and other spores – is used across many fields of study including modern and fossil vegetation dynamics, forensic sciences, pollination, and beekeeping. To help make pollen identification quicker and more transparent, we developed the Global Pollen Project (GPP) – an open, peer-reviewed database of global pollen morphology, where content and expertise is crowdsourced from across the world. Our approach to developing this tool was open: open code, open data, open access. It connects to other data services, including the Global Biodiversity Information Facility and Neotoma Palaeoecology Database, to provide occurrence data for each taxon, alongside pollen images and metadata. Continue reading