Finding the Links between Prey and Microplastics

Below is a press release about the Methods in Ecology and Evolution article ‘What goes in, must come out: Combining scat‐based molecular diet analysis and quantification of ingested microplastics in a marine top predator‘ taken from Plymouth Marine Laboratory.

Wild grey seals. By Philip Newman, Natural Resources Wales

A brand new method has been developed by scientists at Plymouth Marine Laboratory (PML) and the University of Exeter, in collaboration with Abertay University and Greenpeace Research Laboratories, to investigate links between top predator diets and the amount of microplastic they consume through their prey. It offers potential insights into the exposure of animals in the ocean and on land to microplastics.

An estimated 9.6-25.4 million tonnes of plastic will enter the sea annually by 2025.  Microplastics in particular have been found on the highest mountains and in the deepest seas. New techniques are needed to trace, investigate and analyse this growing concern. Continue reading

New Tool to Assess Effects of Powerful Man-Made Underwater Sounds

Below is a press release about the Methods paper ‘An interim framework for assessing the population consequences of disturbance‘ taken from the University of St Andrews:

A team of scientists from the University of St Andrews has developed a new desktop tool for assessing the impact of noise from human disturbance, such as offshore wind development on marine mammal populations.

PCOD_PR_imageThe team, led by Prof. John Harwood, have developed the interim Population Consequences of Disturbance (PCoD) framework for assessing the consequences of human induced noise disturbance on animal populations. The study was published yesterday in the journal Methods in Ecology and Evolution.

Changes in natural patterns of animal behaviour and physiology resulting from animals being disturbed may alter the conservation status of a population if the activity affects the ability of individuals to survive, breed or grow. However, information to forecast population-level consequences of such changes is often lacking. The project team developed an interim framework to assess impacts when empirical information is sparse. Crucially, the model shows how daily effects of being disturbed, which are often straightforward to estimate, can be scaled to the duration of disturbance and to multiple sources of disturbance.

“We have developed a novel framework that can be used to broadly forecast the consequences of anthropogenic disturbance on animal populations, which in principal can be applied to a range of marine and terrestrial species and different types of disturbance.” – Dr Stephanie King

One important application for the interim PCoD framework is in the marine industry. Many industries use practices that involve the generation of underwater noise. These include shipping, oil and gas exploration, defence activities and port, harbour and renewable energy construction. Continue reading