Radar Wind Profilers: A Widespread but Unused Remote Sensing Tool for Migration Ornithologists

Post provided by Nadja Weisshaupt

Snapshot of nocturnal waterfowl migration in front of the lunar disk. ©N. Weisshaupt

Snapshot of nocturnal waterfowl migration in front of the lunar disk. ©N. Weisshaupt

Each year an uncountable number of airborne organisms, mainly birds and insects, venture out on long journeys across the globe. In particular, the mass movements of birds have fascinated humankind for hundreds of years and inspired a wealth of increasingly sophisticated studies. The development and improvement of individual tracking devices in animal research and has provided amazing insights into such extensive journeys. Study of mass movements of biological organisms is still a challenge on continent-wide or cross-continental scales.

One tool that can effectively track and/or monitor large numbers of birds is radar technology. Radars offer many advantages over other methods such as visual counts or ringing. They’re less expensive, need less effort, offer better visibility and detectability, and are more applicable for large-scale monitoring. Networks of meteorological radars (as opposed to individual radars) seem particularly promising for large-scale studies. Continue reading

New Associate Editor: David Soto

Today, we are pleased to be the latest new member of the Methods in Ecology and Evolution Associate Editor Board. David Soto joins us from the University of Leuven in Belgium and you can find out a little more about him below.

David Soto

“I am an isotope ecologist with interests in developing new stable isotope methods and techniques for tracing spatio-temporal changes in food webs, and understanding animal movement and large-scale migration. My current research focus is on aquatic food webs using isotopic tracers such as hydrogen isotopes, and on insect migration patterns predicting natal origins by combining isoscapes and likelihood-based geospatial assignment methods.”

David is currently working on isotopic methodologies to quantify the linkages and support of aquatic and terrestrial primary production sources into Afrotropical aquatic food webs. He recently developed a new method to distinguish dietary sources combining stable isotopes and trace metal accumulation data. Other recent published articles investigated the use of hydrogen isotopes to track fish provenance and to infer butterfly migration movements across the Sahara. He is also collaborating with the IsoriX core team to develop a new method and R package to infer spatial origins of migratory animals using mixed models.

We are thrilled to welcome David as a new Associate Editor and we look forward to working with him on the journal.