Life-Long Mosquito Marking: Are Stable Isotopes the Key?

Post provided by ROY FAIMAN

Importance of Marking (Wild) Mosquitoes

Dr. Dao (crouching on right) and team with Dr. Tovi Lehmann (with sandals), Dr. Yaro (with white cap), and Moussa Diallo (front).

The fact that mosquitoes are insects of massive importance is of little dispute. With malaria still killing almost half a million people annually and after recent outbreaks of Zika, dengue and West-Nile viruses the threat of mosquito-borne diseases is becoming common knowledge. The meme of ‘Mosquitoes are the No.1 killer of all time,’ is also growing more popular (I even heard it from my 8-year-old kid one day after he returned from school!). Yet, with all we think we know about the little bug(ger)s, it’s probably only the tip of the iceberg.

Much work was done over the past century to try to answer basic questions about mosquitoes like:

  • How big are their populations?
  • How long do they live?
  • Where do they go when we don’t see or feel them?

Different methods have been developed to provide insights and notions on the mosquitoes’ movements, survival, and populations estimates; but the limitations and conditions of these methods mean that our knowledge is still incomplete.

One of the gold-standard tools for answering questions like those above is Mark-Release-Recapture (MRR). It was developed almost a century ago and has been modified and remodified through the years, as different marking technologies became available. Continue reading

Mosquitoes, Climate Change and Disease Transmission: How the Suitability Index P Can Help Improve Public Health and Contribute to Education

Post Provided by JOSÉ LOURENÇO

Esta publicação no blogue também está disponível em português

©BARILLET-PORTAL David

©BARILLET-PORTAL David

Vector-borne viruses (like those transmitted by mosquitoes) are (re)emerging and they’re hurting local economies and public health. Some typical examples are the West Nile, Zika, dengue, chikungunya and yellow fever viruses. The eco-evolutionary and epidemiological histories of these viruses differ massively. But they share one important factor: their transmission potential is highly dependent on the underlying mosquito population dynamics.

An ultimate challenge in infectious disease control is to prevent the start of an outbreak or alter the course of an ongoing outbreak. To achieve this, understanding the ecological, demographic and epidemiological factors driving a pathogen’s transmission success is essential. Without this information, public health planning is immensely difficult. To get this information, dynamic mathematical models of pathogen transmission have been successfully applied since the mid-20th century (e.g. malaria and dengue). Continue reading