A Surgical Approach to Dissection of an Exotic Animal

Post provided by Aaron T Irving, Justin HJ Ng and Lin-fa Wang

An Australian black flying fox – missing an ear, but fit for release.

Bats. They’re amazing creatures. Long-lived (with relevance to their body size), echolocating (for microbats and some megabats), metabolically-resilient (apparently resilient to most virus infections) flying mammals (with heart beats up to 1200 bpm for hours during flight). There are 1,411 species of this incredible creature. But very little is known about their physiology and unique biological traits. And detailed evolutionary analysis has only just begun.

The problem is, they’re an ‘exotic’ animal (wildlife that most people do not come into contact with). Being a long-lived animal producing minimal offspring (most only have one baby per year), they’re not suited to the kind of experimental studies we do with other animals like mice. Unavoidably, some aspects of biology require the use of tissues and cells. These samples can be used for sequencing, genomics, molecular evolution studies, detailed transcriptomic analysis, functional experiments with specific cell types and much more. Some methodology is beginning to be published – such as capture techniques and wing punch/genomic isolation – but there’s been an absence of protocols for the processing of bats. This is essential for the field to maximise the potential application of each individual and for minimising non-essential specimen collection.

Continue reading

New eDNA Programme Makes Conservation Research Faster and More Efficient

Below is a press release about the Methods in Ecology and Evolution article ‘Anacapa Toolkit: An environmental DNA toolkit for processing multilocus metabarcode datasets‘ taken from UCLA.

It’s estimated that a person sheds between 30,000 to 40,000 skin cells per day. These cells and their associated DNA leave genetic traces of ourselves in showers, dust — pretty much everywhere we go.

Other organisms shed cells, too, leaving traces throughout their habitats. This leftover genetic material is known as environmental DNA, or eDNA. Research using eDNA began about a decade ago, but was largely limited to a small cadre of biologists who were also experts in computers and big data. However, a new tool from UCLA could be about to make the field accessible and useful to many more scientists.

A team of UCLA researchers recently launched the Anacapa Toolkit — open-source software that makes eDNA research easier, allowing researchers to detect a broad range of species quickly and producing sortable results that are simple to understand. Continue reading

Issue 10.7: Aquatic Ecology, Zeroes, Sequencing and More

The July issue of Methods is now online!

We’ve got a bumper issue of Methods in Ecology and Evolution this month. In the 200+ pages, you’ll find articles about measuring species distributions and abundances, integrated population models, and working at the whole-plant scale.

We’ve got six papers that are freely available to absolutely everyone this month too. You can find out about two of the Open Access papers in the Applications and Practical Tools section below. In the third, Chen et al. show that tree assemblages in tropical forest ecosystems can present a strong signal of extensive distributional interspersion.

Find out a little more about the new issue of Methods in Ecology and Evolution below. Continue reading

Using Dual RNA-seq to Investigate Host-Pathogen Systems When Genomic Resources are Limited

Post provided by KAYLEIGH O’KEEFFE

Tall fescue infected with fungal pathogen, Rhizoctonia solani. ©Brooklynn Newberry

Tall fescue infected with fungal pathogen, Rhizoctonia solani. ©Brooklynn Newberry

Pathogens and the infectious diseases that they cause can have devastating impacts on host individuals and populations. To better understand how pathogens are able to cause disease, we can investigate the genetic mechanisms underlying the infection process. Hosts may respond to infection by upregulating defence pathways. Pathogens, in turn, evade these host immune responses as they infect and cause disease. As this process unfolds and each organism responds to the other, gene expression changes in both the host and the pathogen. These gene expression changes can be captured by dual RNA‐seq, which simultaneously captures the gene expression profiles of a host and of a pathogen during infection. Continue reading