The latest issue of Methods in Ecology and Evolution is now online! This month’s issue is a little shorter than our last few. But, as they say, good things come in small packages!
Executive Editor Aaron Ellison has selected six Featured Articles this month. You can find out about all of them below. We’ve also got five Applications articles in the March issue that we’re going to cover.
Executive Editor Rob Freckleton has selected six Featured Articles this month. You can find out about all of them below. We’ve also got six Applications articles and five Open Access articles in the February issue – we’ll talk about all of those here too.
We’re starting 2020 with a great issue – and ALL of the articles are completely free. And they’ll remain free for the whole year. No subscription required.
You can find out more about our Featured Articles (selected by the Senior Editor) below. We also discuss this month’s Open Access, Practical Tools and Applications articles. There are also articles on species distributions, biotic interactions, taxonomic units and much more.
In January 2018, Methods in Ecology and Evolution launched a Policy on Publishing Code. The main objective of this policy is to make sure that high quality code is readily available to our readers. set out four key principles to help achieve this, as well as explaining what code outputs we publish, giving some examples of things that make it easier to review code, and giving some advice on how to store code once it’s been published.
The British Ecological Society (BES) is a thriving learned society established in 1913 whose vision is a world inspired, informed and influenced by ecology. It publishes five successful journals, and a quarterly newsletter, the Bulletin, that is distributed to its 5,000 members worldwide. At present, the BES is seeking an outstanding ecologist to join the team of Senior Editors on Methods in Ecology and Evolution.
Methods in Ecology and Evolution (MEE) is a high-profile broad-scope journal which promotes the development of new methods in ecology and evolution and facilitates their dissemination and uptake by the research community. It brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. The journal has excellent citation metrics including a current Impact Factor of 6.34 and an active social media presence.
Submissions to MEE are growing and we are seeking an Senior Editor to strengthen and complement the editorial team and to continue raising the journal’s profile worldwide. The journal’s editorial team currently consists of three Senior Editors who are supported by an international board of around 60 Associate Editors and dedicated editorial office personnel. The Editors work together to determine journal strategy and to increase the reputation and quality of the journal, in addition to making decisions on around 800 manuscripts submitted each year. Further details about the Journal and its current editorial team can be found at www.methodsinecologyandevolution.org. Continue reading “Senior Editor Vacancy at Methods in Ecology and Evolution”
In a new Methods in Ecology and Evolution podcast, the Senior Editors – Rob Freckleton, Bob O’Hara and Jana Vamosi – discuss the past, present and future of the journal. They talk about what sets it apart from other journals, their favourite articles and the kinds of papers that they would like to see more of. If you’re thinking about submitting to Methods in Ecology and … Continue reading What is Methods in Ecology and Evolution?
Today we are welcoming two new Associate Editors to Methods in Ecology and Evolution: Samantha Price (University of California, Davis, USA) and Andrés Baselga (University of Santiago de Compostela, Spain). Samantha Price “My research seeks to answer the question ‘What regulates biodiversity?’. I use phylogenetic and comparative methods to investigate the abiotic and biotic drivers of global patterns of ecomorphological and lineage diversity over long periods of time and across … Continue reading New Associate Editors
The paper, which is freely available, describes the package and the data it wraps in detail. Rather than rehash the information here, we will use this post to briefly introduce the goals of the package and thank some of the people that helped it come to be.
What Data Does Open Tree Have and How Can rotl Help You Get It?
The Open Tree of Life combines knowledge from thousands of scientific studies to produce a single source of information about the relationships among all species on earth. In addition to storing the trees and taxonomies that go into this project, the Open Tree provides a “synthesis tree” that represents this combined knowledge. The Open Tree data can be accessed via the web page linked above, and through an API. rotl takes advantage of this API to give R users the ability to search for phylogenetic information and import the results into their R sessions. The imported data can then be used with the growing ecosystem of packages for phylogenetic and comparative biology in R. Continue reading “rotl Paper Published”
If you are attending Evolution, as well as attending the fabulous talks mentioned by Hélène below, do stop by booth 125 to see our BES colleague Simon Hoggart. Simon is the Assistant Editor of Journal of Animal Ecology and would be happy to answer your questions about any of our journals or any of the other work we do here at the BES.
RPANDA: a time machine for evolutionary biologists
Imagine “Doc”, Marty’s friend in Back to the Future, trying to travel back millions of years in an attempt to understand the history of life. Instead of building a time machine from a DeLorean sports car powered by plutonium, he could dig fossils, or more likely, he would use molecular phylogenies.
Molecular phylogenies are family trees of species that can be built from data collected today: the genes (molecules) of present-day species (Fig 1). They are often thought of as trees, in reference to Darwin’s tree of life. The leaves represent the present: species that can be found on Earth today. The branches represent the past: ancestral species, which from time to time split, giving rise to two independent species. The structure of the tree tells us which species descend from which ancestors, and when their divergence happened.
Fig 1: The phylogenetic tree of all birds (adapted from Jetz et al. 2012). Each bird order is represented by a single bird silloutter and a specific colour (the most abundant order of Passeriformes, for example is represented in dark orange). Each terminal leaf represents a present-day bird species, while internal branches represent the evolutionary relationships among these species.
Today is 10th National Wildlife Day. As we have done for a few awareness days this year (Bats, Biodiversity and Bees so far) we are marking the day by highlighting some of our favourite Methodsin Ecology and Evolution articles on the subject. Obviously ‘wildlife’ is a pretty big topic, so we have narrowed our focus (slightly) to monitoring wildlife (with one or two additional papers that we didn’t want to leave out).
This list is certainly not exhaustive and there are many more wonderful articles on these topics in the journal. You can see more of them on the Wiley Online Library.
If you would like to learn more about National Wildlife Day, you may wish to visit the organisation’s website, follow them on Twitter and Facebook or check out today’s hashtag: #NationalWildlifeDay.
Without further ado though, please enjoy our selection of Methods articles for National Wildlife Day:
Integrating Demographic Data
Our National Wildlife Day celebration begins with an article from our EURING Special Feature. Robert Robinson et al. present an approach which allows important demographic parameters to be identified, even if they are not measured directly, in ‘Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales‘. Using their approach they were able to retrieve known demographic signals both within and across species and identify the demographic causes of population decline in Song Thrush and Lawping.