Reconsidering how we measure forests with LiDAR

Post provided by Jeff W. Atkins (he/him)

Ecological researchers have adopted light detection and ranging (LiDAR) as a means of quantifying ecosystem structure over the past 25+ years. This is especially true in forest-related research, as LiDAR provides the ability to estimate ecosystem structure with incredibly fine detail, over broad areas. LiDAR can work at the scale of individual trees—for example crown delineation algorithms that identify singular tree canopies—or the stand-level with aggregate structural metrics. In this blog post, Jeff shares insight from he and his co-author’s recent publication “Scale dependency of LiDAR-derived forest structural diversity,” which proposes that using LiDAR requires statistical reassessment to ensure we are measuring what we think we are.

Continue reading “Reconsidering how we measure forests with LiDAR”

Functional Strategies to COP26

This year’s UN Climate Change Conference (COP26) will be held in Glasgow in November, and now more than ever before, the pressure is on for world leaders to agree on climate action to keep global warming below 1.5°c. In the lead up to the conference, we’re asking our editors and authors to share their research at the interface of climate and ecology. In this post, Jesus Aguirre Gutierrez of the University of Oxford presents research on the role of functional diversity in the response of tropical forests to climate change.

Continue reading “Functional Strategies to COP26”

International Day of Forests: Generation Restoration

Post provided by Chloe Robinson

Credit: Food and Agriculture Organization of the United Nations.

Forests, across all ecozones and in all shapes and sizes, are essential for life on earth. Around 80% of the world’s land-based biodiversity call forests home and over 1 billion people, including more than 2,000 Indigenous cultures, rely on forests for food, shelter, energy and income. As with many other ecosystems, forests worldwide are under increasing threat from human activities, with the current rate of deforestation estimated at 13 million hectares per year.

Continue reading “International Day of Forests: Generation Restoration”

Issue 10.5: Movement Ecology, Palaeobiology, Monitoring and More

The May issue of Methods is now online!

The May issue of Methods in Ecology and Evolution is absolutely packed! We’ve got a new ecoacoustics method from Metcalf et al. and a new inference and forecasting method from Cenci et al. There’s also a forum article on image analysis, and papers on physiology, palaeobiology, capture-recapture and much more. We’ve got SIX papers that are freely available to absolutely everyone this month too.

Find out a little more about the new issue of Methods in Ecology and Evolution (including details about what the diver is doing to the coral in the cover image) below. Continue reading “Issue 10.5: Movement Ecology, Palaeobiology, Monitoring and More”

Issue 8.11

Issue 8.11 is now online!

The November issue of Methods is now online!

This extra large issue contains seven Applications articles and three Open Access articles. These five papers are freely available to everyone, no subscription required.

 LSCorridors: LandScape Corridors considers stochastic variation, species perception and landscape influence on organisms in the design of ecological corridors. It lets you simulate corridors for species with different requirements and considers that species perceive the surrounding landscape in different ways.

 HistMapR: HistMapR contains a number of functions that can be used to semi-automatically digitize historical land use according to a map’s colours. Digitization is fast, and agreement with manually digitized maps of around 80–90% meets common targets for image classification. This manuscript has a companion video and was recommended by Associate Editor Sarah Goslee.

 vortexR: An R package to automate the analysis and visualisation of outputs from the population viability modelling software Vortex. vortexR facilitates collating Vortex output files, data visualisation and basic analyses (e.g. pairwise comparisons of scenarios), as well as providing more advanced statistics.

Continue reading “Issue 8.11”

Why Do We Need Digital Elevation Models to Infer the Local Adaptation of Alpine Plants?

Post provided by Kevin Leempoel

dsc_4214-crest-flight-27-06-11It’s not easy to characterise the local environment of species living in mountains because these habitats are highly heterogeneous. At a large scale, we typically assume that temperature varies with altitude, but at a local scale, we understand that exposure to wind or being in the shade has a great influence on climatic conditions. If you go from the south-facing to the north-facing side of a mountain, it can be easily 5°C colder. If we can feel that, so can the organisms that live up there. Plants in particular are submitted to tremendous climatic variations over a year. What we want to know is: how did they adapt to these climatic variations and how localised is their adaptation?

Overcoming the Challenges of Measuring Local Adaptation

We don’t know much about how organisms adapt locally because it’s so difficult to measure the environmental conditions that these plants are facing. Existing weather stations can’t capture micro-habitat conditions because they are few and far between. What we can do instead, is use topographic models of mountains to model their environment. After all, if orientation, slope or shade have an impact on climatic conditions, why couldn’t we use them to model local variations in temperature for example? Continue reading “Why Do We Need Digital Elevation Models to Infer the Local Adaptation of Alpine Plants?”

Lasers in the Jungle Somewhere: How Airborne LiDAR Reveals the Structure of Forests

Post provided by Phil Wilkes (PDRA, Department of Geography, University College London)

Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO
Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO

How many samples do you hope to collect on your next field assignment? 50, 100 or 1000? How about billions. It may seem overly optimistic, but that’s the reality when using Light Detection and Ranging, or LiDAR.

LiDAR works on the principle of firing hundreds of thousands of laser pulses a second that measure the distance to an intercepting surface. This harmless barrage of light creates a highly accurate 3D image of the target – whether it’s an elephant, a Cambodian temple or pedestrians walking down the street. LiDAR has made the news over recent years for its ability to unearth ancient temples through thick jungle, but for those of us with an ecological motive it is the otherwise impenetrable cloak of vegetation which is of more interest.

Airborne LiDAR in Forests

As it’s National Tree Week in the UK, the focus of this blog post will be on the application of LiDAR in forests. There are a number of techniques that use LiDAR in forests, across a range of scales, from handheld, backpack and tripod mounted terrestrial laser scanners to spaceborne instruments on the International Space Station. Continue reading “Lasers in the Jungle Somewhere: How Airborne LiDAR Reveals the Structure of Forests”

2015 Robert May Prize Winner: Kim Calders

The Robert May Prize is awarded annually for the best paper published in Methods in Ecology and Evolution by an Early Career Researcher. We’re delighted to announce that the 2015 winner is Kim Calders, for his article ‘Nondestructive estimates of above-ground biomass using terrestrial laser scanning.

Kim led the work on this article and had an international team of co-authors. They have developed a way to harness laser technology for use in measurements of vegetation structure of forests. The study is an important development in the monitoring of carbon stocks for worldwide climate policy-making. Continue reading “2015 Robert May Prize Winner: Kim Calders”