Methods in Temporal Ecology

Post provided by Althea L. Davies & M. Jane Bunting

This post presents our reflections from two sessions at the first British Ecological Society Annual Meeting since the Palaeoecology Special Interest Group (SIG) was formed. Did the term “palaeoecology” make you want to stop reading? Then you’re not alone – our field of ecology seems to have drifted apart from neoecology over the last couple decades. We seem to have been separated by our choice of methods, rather than brought together by the fascinating, complex and essential challenges of better understanding ecosystem function that we share.

The diversity of talks at BES 2018 showed that ecologists working on time scales beyond the scope of direct study are researching the same urgent, exciting questions as other flavours of ecology. And that they are doing it by using an ever-growing range of methods and technologies. The Thematic Session ‘Advancing Our Understanding of Long-Term Ecology’ showcased advances in studies of long-term ecology. The Palaeoecology Oral Session demonstrated the diversity within this field. We don’t have room to mention all presenters, so we’d like to highlight contributions from two speakers in each session which demonstrate how strong the shared ground between palaeoecology and neoecology is. Continue reading

How to Assemble, Fill and Clean Metapopulation Microcosm Plates: Two Video Tutorials

Metapopulation Microcosm Plates (MMP) are devices which resemble 96-well microtiter plates in size and shape, but with corridors connecting the wells in any configuration desired. They can be used to culture microbial metapopulations or metacommunities with up to 96 habitat patches.

In these two video tutorials, Helen Kurkjian explains how you can assemble, fill and clean MMPs in your lab.

Continue reading

Spatial Capture-Recapture: The Pros and Cons of Aggregating Detections

Post provided by Cyril Milleret

Spatial Capture-Recapture and Computation Time

SCR models simultaneously estimate the detection function and density of individual activity centres. A half-normal detection model is generally used.

SCR models simultaneously estimate the detection function and density of individual activity centres. A half-normal detection model is generally used.

The estimation of population size is one of the primary goals and challenges in wildlife ecology. Within the last decade and a half, a new class of tools has emerged, allowing us to estimate abundance and other key population parameters in specific areas. So-called spatial capture-recapture (SCR) models are growing in popularity not only because they can map abundance, but also because they can be fitted to data collected from a variety of monitoring methods. For example, the ever increasing use of non-invasive monitoring methods, such as camera trapping and non-invasive genetic-sampling, is one of the reason that makes SCR models so popular.

One other strengths of SCR models is the ability to make population level inferences. But the wider the region you’re monitoring, the greater the computational burden, challenging the use of such methods at really large scale. Continue reading

What the Past Can Tell Us About the Future: Notes from Crossing the Palaeontological – Ecological Gap

Post provided by Karen Bacon

I had the pleasure of delivering one of the plenary talks at the first (hopefully of many) Crossing the Palaeontological – Ecological Gap meeting held in the University of Leeds on August 30th and 31st. I’m a geologist and a botanist, so this is a topic that’s close to my heart and my professional interests.

How Palaeoecology Can Help Us Today

©Gail Hampshire

©Gail Hampshire

As we move into an ecologically uncertain future with pressures of climate change, land-use change and resource limitations, the fossil record offers the only truly long-term record of how Earth’s ecosystems respond to major environmental upheaval driven by climate change events. The fossil record is, of course, not without its problems – there are gaps, not everything fossilises in the same way or numbers, and comparisons to today’s ecology are extremely difficult.  It’s these difficulties (and other challenges) that make the uniting of palaeontology and ecology essential to fully address how plants, animals and other organisms have responded to major changes in the past. Perhaps uniting them could give us an idea of what to expect in our near-term future, as carbon dioxide levels return to those not previously experienced on Earth since the Pliocene, over 2 million years ago. Continue reading

Crossing the Palaeontological-Ecological Gap

Today is the first day of the Crossing the Palaeontological-Ecological Gap (CPEG) conference. The aim of the conference is to open a dialogue between palaeontologists and ecologists who work on similar questions but across vastly different timescales. This splitting of temporal scales tends to make communication, data integration and synthesis in ecology harder. A lot of this comes from the fact that palaeontologists and ecologists tend to publish in different journals and attend different meetings.

Methods in Ecology and Evolution is one of few ecological journals that attracts submissions from both ecologists and palaeontologists. To highlight this, we’ve released a Virtual Issue, also called Crossing the Palaeontological-Ecological Gap. Continue reading

Integrating Evolution and Ecology

©H. Zell

©H. Zell

The latest Methods in Ecology and Evolution Virtual Issue – ‘Integrating Evolution and Ecology‘ – is in honour of the late Isabelle Olivieri (1957-2016): an international, interdisciplinary and ground-breaking biologist. It was edited by Louise Johnson and James Bullock and features papers on topics she researched, and in many cases pioneered. But it might perhaps have been more difficult to find 15 Methods papers on areas outside of Isabelle’s research interests!

Isabelle was the first Professor of Population Genetics at Montpellier, a past President of the European Society for Evolutionary Biology (2007-2009), and a member of the European Molecular Biology Organization. She spanned subject boundaries as easily as she collaborated across geographical borders. Her publications range through metapopulation and dispersal ecology, host-parasite coevolution, life history, invasive species and conservation ecology. In keeping with this breadth of interests, she also combined theory easily with experiment, and worked with a wide range of study systems from mites to Medicago. Continue reading

Virtually Trekking Across the Pond with the Newest Senior Editor: Aaron M. Ellison

Post Provided by Aaron Ellison

I’m delighted to be the newest member of the diverse team of Senior and Associate Editors who have made Methods in Ecology and Evolution one of the premier journals in the field. After 15 years working on the lead editorial teams of Ecology and Ecological Monographs, I’m really looking forward to applying my editorial energies to the ESA’s friendly competitor on the other side of the ‘pond’.

My background includes:

  • an undergraduate degree in East Asian Philosophy
  • a PhD in evolutionary ecology
  • research and teaching on the natural history and population, community, and landscape ecology of plants and animals (mostly invertebrates) in the marine intertidal and subtidal, among salt marshes and mangroves, tropical and temperate forests, and carnivorous plant bogs
  • extensive forays into statistics, mathematics, and software engineering
  • increasing attention to the history and practice of art and architecture and their relationship to ecological theory
  • a quirky social-media persona
  • and more than two decades of work in editing and publishing journals with scientific societies.

All of these things contribute to my open, catholic approach to scientific research, teaching, and publishing, and their relationship to the broader world.

The editors of Methods are always interested in seeing papers on methodological advances and approaches that lead to new directions. We love reading about creative solutions for new challenges in ecological and evolutionary research and applications in the broadest sense. As a new Senior Editor, I’m especially hoping to encourage more papers in three areas: field methods (about which I’ve published two of my own papers in Methods), reproducibility, and science communication. Continue reading

2017 Robert May Prize Winner: Jonathan Henshaw

The Robert May Prize is awarded annually for the best paper published in Methods in Ecology and Evolution by an Early Career Researcher. We’re delighted to announce that the 2017 winner is Jonathan Henshaw, for his article ‘A unified measure of linear and nonlinear selection on quantitative traits.

The standard approach to quantifying natural selection, developed by Lande and Arnold, does not allow for comparable metrics between linear (i.e. selection on the mean phenotype) and nonlinear (i.e. selection on all other aspects of the phenotypic distribution, including variance and the number of modes) selection gradients. Jonathan Henshaw’s winning submission provides the first integrated measure of the strength of selection that applies across qualitatively different selection regimes (e.g. directional, stabilizing or disruptive selection). Continue reading

Who to Trust? The IDEA Protocol for Structured Expert Elicitation

Post provided by Victoria Hemming and Mark Burgman

Expert judgement is used to predict current and future trends for Koala populations across Australia

Expert judgement is used to predict current and future trends for Koala populations across Australia

New technologies provide ecologists with unprecedented means for informing predictions and decisions under uncertainty. From drones and apps that capture data faster and cheaper than ever before, to new methods for modelling, mapping and sharing data.

But what do you do when you don’t have data (or the data you have is incomplete or uninformative), but decisions need to be made?

In ecology, decisions often need to be made with imperfect or incomplete data. In these circumstances, expert judgement is relied upon routinely. Some examples include threatened species listing decisions, weighing up the cost and benefit of management actions, and environmental impact assessments.

We use experts to answer questions such as:

These are questions about facts in the form of quantities and probabilities for which we simply can’t collect the data. Continue reading

Resolving Conservation Conflicts: The Nominal Group Technique

Post provided by Jean Hugé

Conservation conflicts are actually conflicts among people with different priorities and values

Conservation conflicts are actually conflicts among people with different priorities.

Conservation issues seem to be getting ever more complex and challenging. Practitioners and society at large agree on the need to gather – and somehow use – as much information as possible before making any conservation-related decisions. Talking to all kinds of people, ranging from local villagers, fishermen and hunters to international experts, community leaders and environmentalists, is now common practice in conservation research. Not everyone will agree on the eventual conservation decisions, but the idea is that decisions should only be made after (almost) everyone’s opinion has been heard.

So far so good. The calls for inclusive conservation are being acknowledged, and we should be ready to move on and make better decisions, right? Well, it’s not always that easy. Conservation conflicts are actually conflicts among people with different priorities and values. Just calling for dialogue and hoping that consensus and effective conservation action will just follow isn’t enough. Continue reading